当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Engineering the Interfacing of Molecules with 2D Transition Metal Dichalcogenides: Enhanced Multifunctional Electronics
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-19 , DOI: 10.1021/acs.accounts.4c00338 Bin Han 1 , Paolo Samorì 1
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-19 , DOI: 10.1021/acs.accounts.4c00338 Bin Han 1 , Paolo Samorì 1
Affiliation
Engineering all interfaces between different components in electronic devices is the key to control and optimize fundamental physical processes such as charge injection at metal–semiconductor interfaces, gate modulation at the dielectric–semiconductor interface, and carrier modulation at semiconductor–environment interfaces. The use of two-dimensional (2D) crystals as semiconductors, by virtue of their atomically flat dangling bond-free structures, can facilitate the tailoring of such interfaces effectively. In this context, 2D transition metal dichalcogenides (TMDs) have garnered tremendous attention over the past two decades owing to their exclusive and outstanding physical and chemical characteristics such as their strong light–matter interactions and high charge mobility. These properties position them as promising building blocks for next-generation semiconductor materials. The combination of their large specific surface area, unique electronic structure, and properties highly sensitive to environmental changes makes 2D TMDs appealing platforms for applications in optoelectronics and sensing. While a broad arsenal of TMDs has been made available that exhibit a variety of electronic properties, the latter are unfortunately hardly tunable. To overcome this problem, the controlled functionalization of TMDs with molecules and assemblies thereof represents a most powerful strategy to finely tune their surface characteristics for electronics. Such functionalization can be used not only to encapsulate the electronic material, therefore enhancing its stability in air, but also to impart dynamic, stimuli-responsive characteristics to TMDs and to selectively recognize the presence of a given analyte in the environment, demonstrating unprecedented application potential.
中文翻译:
设计分子与二维过渡金属二硫属化物的界面:增强型多功能电子学
对电子器件中不同组件之间的所有接口进行工程设计是控制和优化基本物理过程的关键,例如金属-半导体界面的电荷注入、电介质-半导体界面的栅极调制以及半导体-环境界面的载流子调制。使用二维(2D)晶体作为半导体,凭借其原子级平坦的悬空无键结构,可以有效地促进此类界面的定制。在这种背景下,二维过渡金属二硫属化物(TMD)由于其独特而突出的物理和化学特性,例如强的光-物质相互作用和高电荷迁移率,在过去二十年中引起了极大的关注。这些特性使它们成为下一代半导体材料的有前途的构建模块。二维 TMD 具有较大的比表面积、独特的电子结构以及对环境变化高度敏感的特性,使其成为光电和传感领域极具吸引力的平台。虽然已经提供了大量具有各种电子特性的 TMD,但遗憾的是后者很难调节。为了克服这个问题,TMD 的分子及其组装体的受控功能化代表了一种最强大的策略,可以微调其电子器件的表面特性。这种功能化不仅可以用于封装电子材料,从而增强其在空气中的稳定性,还可以赋予TMD动态、刺激响应特性,并选择性地识别环境中给定分析物的存在,展现出前所未有的应用潜力。
更新日期:2024-08-19
中文翻译:
设计分子与二维过渡金属二硫属化物的界面:增强型多功能电子学
对电子器件中不同组件之间的所有接口进行工程设计是控制和优化基本物理过程的关键,例如金属-半导体界面的电荷注入、电介质-半导体界面的栅极调制以及半导体-环境界面的载流子调制。使用二维(2D)晶体作为半导体,凭借其原子级平坦的悬空无键结构,可以有效地促进此类界面的定制。在这种背景下,二维过渡金属二硫属化物(TMD)由于其独特而突出的物理和化学特性,例如强的光-物质相互作用和高电荷迁移率,在过去二十年中引起了极大的关注。这些特性使它们成为下一代半导体材料的有前途的构建模块。二维 TMD 具有较大的比表面积、独特的电子结构以及对环境变化高度敏感的特性,使其成为光电和传感领域极具吸引力的平台。虽然已经提供了大量具有各种电子特性的 TMD,但遗憾的是后者很难调节。为了克服这个问题,TMD 的分子及其组装体的受控功能化代表了一种最强大的策略,可以微调其电子器件的表面特性。这种功能化不仅可以用于封装电子材料,从而增强其在空气中的稳定性,还可以赋予TMD动态、刺激响应特性,并选择性地识别环境中给定分析物的存在,展现出前所未有的应用潜力。