当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Role of London Dispersion Interactions in Modern Chemistry
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-20 , DOI: 10.1021/acs.accounts.4c00465
Stefan Grimme 1 , Peter R Schreiner 2
Affiliation  

The intricate and subtle forces governing molecular interactions have long captivated the scientific community. This special issue of Accounts of Chemical Research highlights the efforts of several leaders in the field who have made significant strides in elucidating the profound impact of London dispersion interactions in molecular chemistry. These contributions offer fresh perspectives and innovative methods that enhance our understanding of dispersion effects and their critical role in thermochemistry, structural chemistry, and reactivity. London dispersion interactions, fundamentally resulting from long-range electron correlation, are essential for realistic computations involving large or condensed systems. Their inclusion is mandatory to achieve accurate and meaningful results in computational chemistry. This special issue sheds light onto various aspects of London dispersion interactions and their pervasive influence across different phases and molecular configurations. This includes, for example, the phase-dependence of molecular structures arising from weak London dispersion interactions or their vital role in stabilizing and modulating molecular assemblies in molecular containers. Their influence on asymmetric induction in chemical synthesis and catalysis is another fascinating topic covered in this issue. Researchers have demonstrated how these individually weak but collectively sizable forces can be harnessed for constructing stereogenic centers, offering new strategies for stereoselective synthesis. This advancement has far-reaching implications for the design and synthesis of complex chiral molecules, which are key for pharmaceuticals and in the materials sciences. The synergy between experimental spectroscopy, thermodynamic measurements, and computational chemistry offers a holistic approach to identify and quantify hydrogen bonding and London dispersion interactions in ionic liquids. The application of NMR spectroscopy to study London dispersion in catalysis represents a significant leap forward in detection, quantification, and practical application. By examining ion pair and transition metal catalysis, scientists can now gain a deeper understanding of how London dispersion influences catalytic efficiency and selectivity paving the way for the development of more efficient catalytic systems. The influence of steric hindrance and London dispersion interactions on the thermochemistry of crowded (fluoro-)alkyl compounds is another area of significance. Understanding these interactions helps in predicting the stability and reactivity of densely packed molecular systems and is also relevant for conceptually understanding fluorinated molecules that play an increasingly important role in pharmaceutical applications. The ability to control molecular cohesion through dispersion forces, particularly by exploiting the aromatic rings’ tipping power, highlights the potential for precise manipulation of molecular interactions. Finally, local energy decomposition analyses of London dispersion effects, from simple model dimers to complex biomolecular assemblies, offer a detailed view of how these interactions operate at different scales. This approach allows for a more nuanced understanding of London dispersion interactions, contributing to the design of better drugs, materials, and catalysts. In conclusion, the contributions in this special issue underscore the multifaceted nature of London dispersion interactions and their far-reaching implications in chemistry. The pioneering work of these researchers not only advances our theoretical understanding but also opens new avenues for practical applications. We are confident that the insights presented here will inspire further research and innovation in the fascinating realm of molecular interactions. This article has not yet been cited by other publications.

中文翻译:


伦敦色散相互作用在现代化学中的作用



控制分子相互作用的复杂而微妙的力量长期以来一直吸引着科学界。本期《化学研究报告》特刊重点介绍了该领域几位领导者的努力,他们在阐明伦敦分散相互作用对分子化学的深远影响方面取得了重大进展。这些贡献提供了新的视角和创新方法,增强了我们对分散效应及其在热化学、结构化学和反应性中关键作用的理解。伦敦色散相互作用基本上是由长程电子关联产生的,对于涉及大型或压缩系统的实际计算至关重要。为了在计算化学中获得准确且有意义的结果,必须包含它们。本期特刊揭示了伦敦色散相互作用的各个方面及其对不同相和分子构型的普遍影响。例如,这包括由弱伦敦分散相互作用产生的分子结构的相依赖性或其在稳定和调节分子容器中的分子组装体中的重要作用。它们对化学合成和催化中不对称诱导的影响是本期涵盖的另一个有趣的主题。研究人员已经证明了如何利用这些单独微弱但集体相当大的力量来构建立体中心,为立体选择性合成提供新的策略。这一进展对复杂手性分子的设计和合成具有深远的影响,这对于制药和材料科学来说至关重要。 实验光谱学、热力学测量和计算化学之间的协同作用提供了一种识别和量化离子液体中氢键和伦敦色散相互作用的整体方法。应用核磁共振波谱研究催化中的伦敦色散代表了检测、定量和实际应用方面的重大飞跃。通过检查离子对和过渡金属催化,科学家现在可以更深入地了解伦敦色散如何影响催化效率和选择性,为开发更高效的催化系统铺平道路。位阻和伦敦色散相互作用对稠密(氟)烷基化合物热化学的影响是另一个重要领域。了解这些相互作用有助于预测密集分子系统的稳定性和反应性,也有助于从概念上理解氟化分子,氟化分子在制药应用中发挥着越来越重要的作用。通过分散力控制分子内聚力的能力,特别是通过利用芳环的倾斜能力,凸显了精确操纵分子相互作用的潜力。最后,伦敦色散效应的局部能量分解分析,从简单的模型二聚体到复杂的生物分子组装体,提供了这些相互作用如何在不同尺度上运作的详细视图。这种方法可以更细致地了解伦敦分散相互作用,有助于设计更好的药物、材料和催化剂。 总之,本期特刊的贡献强调了伦敦色散相互作用的多方面性质及其对化学的深远影响。这些研究人员的开创性工作不仅增进了我们的理论理解,而且为实际应用开辟了新的途径。我们相信,这里提出的见解将激发分子相互作用这一迷人领域的进一步研究和创新。这篇文章尚未被其他出版物引用。
更新日期:2024-08-20
down
wechat
bug