当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Connecting Features of Ionomer Scattering Profiles to the Real-Space Structural Features of Ionomer Domains
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-19 , DOI: 10.1021/acs.macromol.4c00988 Jason J. Madinya 1 , Stephen Kronenberger 1 , Benjamin Gould 2 , Colin Peterson 2 , Arthi Jayaraman 1, 3
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-19 , DOI: 10.1021/acs.macromol.4c00988 Jason J. Madinya 1 , Stephen Kronenberger 1 , Benjamin Gould 2 , Colin Peterson 2 , Arthi Jayaraman 1, 3
Affiliation
Membranes made of hydrated ionomers are frequently used in ion-exchange applications, such as hydrogen fuel cells and water electrolyzers. Perfluorinated sulfonic acid (PFSA) ionomer membranes are suited for these applications as they possess chemical stability and mechanical stability at elevated pressures and temperatures and have ion transport capabilities. Hydrated PFSA ionomers form a nanophase-separated structure that has an ion-conducting hydrophilic phase and a nonconducting, semicrystalline hydrophobic phase. This complex nanophase structure of hydrated ionomers is a topic of great interest, and there have been a number of studies attempting to elucidate the morphology of hydrated ionomers by using microscopy, simulations, and scattering measurements. In this work, we seek to understand the connection between the ionomer design and the resulting nanophase structure under various hydration conditions using coarse-grained molecular simulations. We study the effects of varying the side chain spacing and side chain lengths on the measured scattering profiles and real-space hydrophilic domain properties. To enable correct real-space interpretation of the scattering measurement structure, we relate features observed in the scattering profiles, such as the ionomer peak location and intensity, to the hydrophilic domain size distribution, tortuosity, and onset of percolation. We also show how new ionomer designs with tailored variations in side chain spacing and side chain length affect domain size distributions and connectivity of the hydrophilic domains.
中文翻译:
将离聚物散射分布特征与离聚物域的实空间结构特征联系起来
由水合离聚物制成的膜经常用于离子交换应用,例如氢燃料电池和水电解槽。全氟磺酸 (PFSA) 离聚物膜适合这些应用,因为它们在高压和高温下具有化学稳定性和机械稳定性,并且具有离子传输能力。水合 PFSA 离聚物形成纳米相分离结构,具有离子传导亲水相和非传导半结晶疏水相。水合离聚物的这种复杂的纳米相结构是人们非常感兴趣的话题,并且已经有许多研究试图通过使用显微镜、模拟和散射测量来阐明水合离聚物的形态。在这项工作中,我们试图使用粗粒度分子模拟来了解在各种水合条件下离聚物设计与所得纳米相结构之间的联系。我们研究了改变侧链间距和侧链长度对测量的散射剖面和真实空间亲水域特性的影响。为了能够对散射测量结构进行正确的实空间解释,我们将散射剖面中观察到的特征(例如离聚物峰位置和强度)与亲水域尺寸分布、弯曲度和渗透开始相关联。我们还展示了侧链间距和侧链长度的定制变化的新离聚物设计如何影响亲水域的域尺寸分布和连接性。
更新日期:2024-08-19
中文翻译:
将离聚物散射分布特征与离聚物域的实空间结构特征联系起来
由水合离聚物制成的膜经常用于离子交换应用,例如氢燃料电池和水电解槽。全氟磺酸 (PFSA) 离聚物膜适合这些应用,因为它们在高压和高温下具有化学稳定性和机械稳定性,并且具有离子传输能力。水合 PFSA 离聚物形成纳米相分离结构,具有离子传导亲水相和非传导半结晶疏水相。水合离聚物的这种复杂的纳米相结构是人们非常感兴趣的话题,并且已经有许多研究试图通过使用显微镜、模拟和散射测量来阐明水合离聚物的形态。在这项工作中,我们试图使用粗粒度分子模拟来了解在各种水合条件下离聚物设计与所得纳米相结构之间的联系。我们研究了改变侧链间距和侧链长度对测量的散射剖面和真实空间亲水域特性的影响。为了能够对散射测量结构进行正确的实空间解释,我们将散射剖面中观察到的特征(例如离聚物峰位置和强度)与亲水域尺寸分布、弯曲度和渗透开始相关联。我们还展示了侧链间距和侧链长度的定制变化的新离聚物设计如何影响亲水域的域尺寸分布和连接性。