当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Active Diffusion of Self-Propelled Particles in Semiflexible Polymer Networks
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-18 , DOI: 10.1021/acs.macromol.4c00087 Yeongjin Kim 1 , Won Kyu Kim 2 , Jae-Hyung Jeon 1, 2, 3
Macromolecules ( IF 5.1 ) Pub Date : 2024-08-18 , DOI: 10.1021/acs.macromol.4c00087 Yeongjin Kim 1 , Won Kyu Kim 2 , Jae-Hyung Jeon 1, 2, 3
Affiliation
Mesh-like structures, such as mucus gels or cytoskeleton networks, are ubiquitous in biological systems. These intricate structures are composed of cross-linked, semiflexible biofilaments, crucial to numerous biological processes. In many biological systems, active self-propelled particles like motor proteins or bacteria navigate these intricate polymer networks. In this study, we develop a computational model of three-dimensional cubic-topological, swollen polymer networks of semiflexible filaments. We perform Langevin dynamics simulations to investigate the diffusion of active tracer particles navigating through these networks. By analyzing various physical observables, we investigate the effects of mesh-to-particle size ratio, Péclet number of active particles, and bending stiffness of the polymer networks upon active trapped-and-hopping diffusion of the tracer. When the tracer size is equal to or larger than the mesh size, the polymer stiffness substantially enhances trapping while suppressing the hopping process. Notably, the mean trapped time exhibits an exponential growth law to the bending stiffness with an activity-dependent slope. An analytic theory based on the mean first-passage time of active particles in a harmonic potential is developed. Our findings deepen the comprehension of the intricate interplay between the polymer’s bending stiffness, tracer size, and the activity of tracer particles. This knowledge can shed light on important biological processes, such as motor-driven cargo transport or drug delivery, which hinge on the behavior of active particles within biological gels.
中文翻译:
自推进粒子在半柔性聚合物网络中的主动扩散
网状结构,例如粘液凝胶或细胞骨架网络,在生物系统中无处不在。这些复杂的结构由交联的半柔性生物丝组成,对许多生物过程至关重要。在许多生物系统中,运动蛋白或细菌等主动自驱动粒子在这些复杂的聚合物网络中导航。在这项研究中,我们开发了半柔性长丝的三维立方拓扑、膨胀聚合物网络的计算模型。我们进行朗之万动力学模拟来研究活跃示踪粒子在这些网络中导航的扩散情况。通过分析各种物理观测值,我们研究了网格与颗粒尺寸之比、活性颗粒的佩克莱特数和聚合物网络的弯曲刚度对示踪剂的活性捕获和跳跃扩散的影响。当示踪剂尺寸等于或大于网格尺寸时,聚合物刚度显着增强捕获,同时抑制跳跃过程。值得注意的是,平均捕获时间对弯曲刚度表现出指数增长规律,且斜率与活动相关。发展了一种基于谐波势中活性粒子的平均首次通过时间的分析理论。我们的研究结果加深了对聚合物弯曲刚度、示踪剂尺寸和示踪剂颗粒活性之间复杂相互作用的理解。这些知识可以揭示重要的生物过程,例如电机驱动的货物运输或药物输送,这些过程取决于生物凝胶内活性颗粒的行为。
更新日期:2024-08-18
中文翻译:
自推进粒子在半柔性聚合物网络中的主动扩散
网状结构,例如粘液凝胶或细胞骨架网络,在生物系统中无处不在。这些复杂的结构由交联的半柔性生物丝组成,对许多生物过程至关重要。在许多生物系统中,运动蛋白或细菌等主动自驱动粒子在这些复杂的聚合物网络中导航。在这项研究中,我们开发了半柔性长丝的三维立方拓扑、膨胀聚合物网络的计算模型。我们进行朗之万动力学模拟来研究活跃示踪粒子在这些网络中导航的扩散情况。通过分析各种物理观测值,我们研究了网格与颗粒尺寸之比、活性颗粒的佩克莱特数和聚合物网络的弯曲刚度对示踪剂的活性捕获和跳跃扩散的影响。当示踪剂尺寸等于或大于网格尺寸时,聚合物刚度显着增强捕获,同时抑制跳跃过程。值得注意的是,平均捕获时间对弯曲刚度表现出指数增长规律,且斜率与活动相关。发展了一种基于谐波势中活性粒子的平均首次通过时间的分析理论。我们的研究结果加深了对聚合物弯曲刚度、示踪剂尺寸和示踪剂颗粒活性之间复杂相互作用的理解。这些知识可以揭示重要的生物过程,例如电机驱动的货物运输或药物输送,这些过程取决于生物凝胶内活性颗粒的行为。