当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Direction-Switchable Self-Thermophoresis Motor with Chiral Antihelical Resonators
ACS Photonics ( IF 6.5 ) Pub Date : 2024-08-18 , DOI: 10.1021/acsphotonics.4c01126 Shuai Li 1 , Xiaoshan Liu 1 , Shu Zong 1 , Jiafei Chen 1 , Guiqiang Liu 1 , Jing Chen 2 , Chaojun Tang 3 , Zhengqi Liu 1
ACS Photonics ( IF 6.5 ) Pub Date : 2024-08-18 , DOI: 10.1021/acsphotonics.4c01126 Shuai Li 1 , Xiaoshan Liu 1 , Shu Zong 1 , Jiafei Chen 1 , Guiqiang Liu 1 , Jing Chen 2 , Chaojun Tang 3 , Zhengqi Liu 1
Affiliation
The thermophoresis effect has revolutionized adjustable manipulation based on physical, chemical, and even biomolecular mechanisms. However, traditional self-propelled and thermophoresis devices lack reconfigurability of their motion, hindering the dynamic switching and artificial spatial location of the motors. Through numerical simulation, this paper delves into the underexplored concept of tunable antihelical resonators, which offer rich managing channels on differential optical absorption, thermal gradient, and propulsion. Utilizing a pair of oppositely helical gold nanostructures, we demonstrate the achievement of direction-switchable self-thermophoresis motion, along with artificially controllable forward and backward propulsion as well as the retrace operation. To clarify the mechanism in detail, the chiral circular dichroism related resonant light energy absorption and temperature gradient distribution around an antihelical particle are observed under various circularly polarized light sources. We further elucidate the rapid responses and principles of photothermal propulsion and successfully manipulate photothermal self-propulsion. Additionally, we establish a linear relationship between the laser power and multiphysical quantities such as velocity and force, enabling quantitative modulation in motion. Our work paves the way for chiroptics enabled direction-switchable self-propelled motion and provides a practically rational basis for direction-switchable motors, nanoparticle transport, tracking techniques, and so on.
中文翻译:
具有手性反螺旋谐振器的方向可切换自热泳电机
热泳效应彻底改变了基于物理、化学甚至生物分子机制的可调节操纵。然而,传统的自驱动和热泳装置缺乏运动的可重构性,阻碍了电机的动态切换和人工空间定位。通过数值模拟,本文深入研究了尚未充分探索的可调谐反螺旋谐振器的概念,该谐振器为差分光学吸收、热梯度和推进提供了丰富的管理通道。利用一对相反的螺旋金纳米结构,我们展示了方向可切换的自热泳运动的实现,以及人为可控的向前和向后推进以及回扫操作。为了详细阐明该机制,在各种圆偏振光源下观察了反螺旋粒子周围与共振光能量吸收相关的手性圆二色性和温度梯度分布。我们进一步阐明了光热推进的快速响应和原理,并成功操纵了光热自推进。此外,我们在激光功率与速度和力等多物理量之间建立了线性关系,从而实现了运动的定量调制。我们的工作为手性光学实现方向可切换自推进运动铺平了道路,并为方向可切换电机、纳米粒子传输、跟踪技术等提供了实用合理的基础。
更新日期:2024-08-18
中文翻译:
具有手性反螺旋谐振器的方向可切换自热泳电机
热泳效应彻底改变了基于物理、化学甚至生物分子机制的可调节操纵。然而,传统的自驱动和热泳装置缺乏运动的可重构性,阻碍了电机的动态切换和人工空间定位。通过数值模拟,本文深入研究了尚未充分探索的可调谐反螺旋谐振器的概念,该谐振器为差分光学吸收、热梯度和推进提供了丰富的管理通道。利用一对相反的螺旋金纳米结构,我们展示了方向可切换的自热泳运动的实现,以及人为可控的向前和向后推进以及回扫操作。为了详细阐明该机制,在各种圆偏振光源下观察了反螺旋粒子周围与共振光能量吸收相关的手性圆二色性和温度梯度分布。我们进一步阐明了光热推进的快速响应和原理,并成功操纵了光热自推进。此外,我们在激光功率与速度和力等多物理量之间建立了线性关系,从而实现了运动的定量调制。我们的工作为手性光学实现方向可切换自推进运动铺平了道路,并为方向可切换电机、纳米粒子传输、跟踪技术等提供了实用合理的基础。