当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Positivity Preserving and Mass Conservative Projection Method for the Poisson–Nernst–Planck Equation
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-08-20 , DOI: 10.1137/23m1581649 Fenghua Tong, Yongyong Cai
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-08-20 , DOI: 10.1137/23m1581649 Fenghua Tong, Yongyong Cai
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2004-2024, August 2024.
Abstract. We propose and analyze a novel approach to construct structure preserving approximations for the Poisson–Nernst–Planck equations, focusing on the positivity preserving and mass conservation properties. The strategy consists of a standard time marching step with a projection (or correction) step to satisfy the desired physical constraints (positivity and mass conservation). Based on the [math] projection, we construct a second order Crank–Nicolson type finite difference scheme, which is linear (exclude the very efficient [math] projection part), positivity preserving, and mass conserving. Rigorous error estimates in the [math] norm are established, which are both second order accurate in space and time. The other choice of projection, e.g., [math] projection, is discussed. Numerical examples are presented to verify the theoretical results and demonstrate the efficiency of the proposed method.
中文翻译:
泊松-能斯特-普朗克方程的保正性和质量守恒投影法
SIAM 数值分析杂志,第 62 卷,第 4 期,2004-2024 页,2024 年 8 月。
抽象的。我们提出并分析了一种为泊松-能斯特-普朗克方程构造结构保持近似的新方法,重点关注正性保持和质量守恒性质。该策略由标准时间推进步骤和投影(或校正)步骤组成,以满足所需的物理约束(正性和质量守恒)。基于[数学]投影,我们构造了二阶Crank-Nicolson型有限差分格式,该格式是线性的(排除非常有效的[数学]投影部分)、正性保持和质量守恒。建立了[数学]范数中严格的误差估计,其在空间和时间上都是二阶准确的。讨论了投影的其他选择,例如[数学]投影。数值例子验证了理论结果并证明了该方法的有效性。
更新日期:2024-08-20
Abstract. We propose and analyze a novel approach to construct structure preserving approximations for the Poisson–Nernst–Planck equations, focusing on the positivity preserving and mass conservation properties. The strategy consists of a standard time marching step with a projection (or correction) step to satisfy the desired physical constraints (positivity and mass conservation). Based on the [math] projection, we construct a second order Crank–Nicolson type finite difference scheme, which is linear (exclude the very efficient [math] projection part), positivity preserving, and mass conserving. Rigorous error estimates in the [math] norm are established, which are both second order accurate in space and time. The other choice of projection, e.g., [math] projection, is discussed. Numerical examples are presented to verify the theoretical results and demonstrate the efficiency of the proposed method.
中文翻译:
泊松-能斯特-普朗克方程的保正性和质量守恒投影法
SIAM 数值分析杂志,第 62 卷,第 4 期,2004-2024 页,2024 年 8 月。
抽象的。我们提出并分析了一种为泊松-能斯特-普朗克方程构造结构保持近似的新方法,重点关注正性保持和质量守恒性质。该策略由标准时间推进步骤和投影(或校正)步骤组成,以满足所需的物理约束(正性和质量守恒)。基于[数学]投影,我们构造了二阶Crank-Nicolson型有限差分格式,该格式是线性的(排除非常有效的[数学]投影部分)、正性保持和质量守恒。建立了[数学]范数中严格的误差估计,其在空间和时间上都是二阶准确的。讨论了投影的其他选择,例如[数学]投影。数值例子验证了理论结果并证明了该方法的有效性。