当前位置: X-MOL 学术Journal of Experimental Psychology: General › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Judging robot ability: How people form implicit and explicit impressions of robot competence.
Journal of Experimental Psychology: General ( IF 3.7 ) Pub Date : 2024-05-01 , DOI: 10.1037/xge0001548
Nicholas Surdel 1 , Yochanan E Bigman 2 , Xi Shen 3 , Wen-Ying Lee 4 , Malte F Jung 5 , Melissa J Ferguson 1
Affiliation  

Robots' proliferation throughout society offers many opportunities and conveniences. However, our ability to effectively employ these machines relies heavily on our perceptions of their competence. In six studies (N = 2,660), participants played a competitive game with a robot to learn about its capabilities. After the learning experience, we measured explicit and implicit competence impressions to investigate how they reflected the learning experience. We observed two distinct dissociations between people's implicit and explicit competence impressions. Firstly, explicit impressions were uniquely sensitive to oddball behaviors. Implicit impressions only incorporated unexpected behaviors when they were moderately prevalent. Secondly, after forming a strong initial impression, explicit, but not implicit, impression updating demonstrated a positivity bias (i.e., an overvaluation of competence information). These findings suggest that the same learning experience with a robot is expressed differently at the implicit versus explicit level. We discuss implications from a social cognitive perspective, and how this work may inform emerging work on psychology toward robots. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

中文翻译:


判断机器人能力:人们如何形成对机器人能力的内隐和外显印象。



机器人在整个社会的普及提供了许多机会和便利。然而,我们有效使用这些机器的能力在很大程度上取决于我们对它们能力的看法。在六项研究 (N = 2,660) 中,参与者与机器人进行了一场竞技游戏,以了解其能力。学习经历结束后,我们测量了显性和隐性的能力印象,以调查它们如何反映学习经历。我们观察到人们的内隐和外显能力印象之间存在两种明显的分离。首先,外显印象对奇怪的行为特别敏感。内隐印象只有在适度普遍的情况下才会包含意想不到的行为。其次,在形成强烈的初始印象后,显性而非隐性的印象更新表现出积极性偏差(即对能力信息的高估)。这些发现表明,相同的机器人学习体验在隐性和显性层面上的表达是不同的。我们从社会认知的角度讨论了影响,以及这项工作如何为机器人心理学的新兴工作提供信息。 (PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
更新日期:2024-05-01
down
wechat
bug