当前位置: X-MOL 学术Journal of Personality and Social Psychology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to "Digital traces of offline mobilization" by Smith et al. (2023).
Journal of Personality and Social Psychology ( IF 6.4 ) Pub Date : 2024-03-01 , DOI: 10.1037/pspa0000390


Reports an error in "Digital traces of offline mobilization" by Laura G. E. Smith, Lukasz Piwek, Joanne Hinds, Olivia Brown and Adam Joinson (Journal of Personality and Social Psychology, 2023[Sep], Vol 125[3], 496-518). The following article is being corrected: https://doi.org/10.1037/pspa0000338. Cangxiong Chen is added as the fifth author in the byline and author note. Cangxiong Chen's ORCID ID is now included in the author note. The CRediT paragraph in the author note now includes Cangxiong Chen's supporting role for the article. The first sentence of the Hypotheses section has been revised. The phrase Good Morning has been deleted from the first paragraph of the Descriptives subsection of Study 1b. The online version of this article has been corrected. (The following abstract of the original article appeared in record 2023-45613-001.) Since 2009, there has been an increase in global protests and related online activity. Yet, it is unclear how and why online activity is related to the mobilization of offline collective action. One proposition is that online polarization (or a relative change in intensity of posting mobilizing content around a salient grievance) can mobilize people offline. The identity-norm nexus and normative alignment models of collective action further argue that to be mobilizing, these posts need to be socially validated. To test these propositions, across two analyses, we used digital traces of online behavior and data science techniques to model people's online and offline behavior around a mass protest. In Study 1a, we used Twitter behavior posted on the day of the protest by attendees or nonattendees (759 users; 7,592 tweets) to train and test a classifier that predicted, with 80% accuracy, who participated in offline collective action. Attendees used their mobile devices to plan logistics and broadcast their presence at the protest. In Study 1b, using the longitudinal Twitter data and metadata of a subset of users from Study 1a (209 users; 277,556 tweets), we found that participation in the protest was not associated with an individual's online polarization over the year prior to the protest, but it was positively associated with the validation ("likes") they received on their relevant posts. These two studies demonstrate that rather than being low cost or trivial, socially validated online interactions about a grievance are actually key to the mobilization and enactment of collective action. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

中文翻译:


史密斯等人对“离线动员的数字痕迹”的更正。 (2023)。



报告 Laura GE Smith、Lukasz Piwek、Joanne Hinds、Olivia Brown 和 Adam Joinson 的“离线动员的数字痕迹”中的错误(人格与社会心理学杂志,2023 年 [9 月],第 125 卷[3],496-518) 。以下文章正在更正:https://doi.org/10.1037/pspa0000338。署名和作者注释中将陈苍雄添加为第五作者。 Cangxiong Chen 的 ORCID ID 现已包含在作者注释中。作者注释中的 CRediT 段落现在包含陈苍雄对文章的配角。假设部分的第一句话已被修改。研究 1b 描述小节第一段中的“早上好”一词已被删除。本文的网络版本已更正。 (以下原文摘要出现在记录 2023-45613-001 中。)自 2009 年以来,全球抗议活动和相关在线活动有所增加。然而,尚不清楚线上活动如何以及为何与线下集体行动的动员相关。一个主张是,在线两极分化(或围绕突出不满发布动员内容的强度的相对变化)可以动员线下的人们。集体行动的身份规范联系和规范一致性模型进一步表明,为了动员起来,这些帖子需要得到社会认可。为了测试这些命题,我们通过两项分析,使用在线行为的数字痕迹和数据科学技术来模拟人们围绕大规模抗议活动的线上和线下行为。在研究 1a 中,我们使用参与者或非参与者(759 位用户;7,592 条推文)在抗议当天发布的 Twitter 行为来训练和测试分类器,该分类器以 80% 的准确度预测谁参与了线下集体行动。 与会者使用他们的移动设备来规划后勤工作并广播他们在抗议活动中的存在。在研究 1b 中,使用研究 1a 中的一部分用户(209 位用户;277,556 条推文)的纵向 Twitter 数据和元数据,我们发现参与抗议活动与个人在抗议前一年的在线两极分化无关,但这与他们在相关帖子上收到的验证(“喜欢”)呈正相关。这两项研究表明,经过社会验证的关于申诉的在线互动并不是低成本或微不足道的,而是动员和实施集体行动的关键。 (PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
更新日期:2024-03-01
down
wechat
bug