当前位置:
X-MOL 学术
›
Soft Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Trajectory Planning on Rolling Locomotion of Spherical Movable Tensegrity Robots with Multi-Gait Patterns.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-04-17 , DOI: 10.1089/soro.2023.0103 Xiaodong Feng 1, 2, 3 , Ji Xu 1 , Jingyao Zhang 2 , Makoto Ohsaki 2 , Yang Zhao 1, 3 , Yaozhi Luo 3 , Yao Chen 4 , Xian Xu 3
Soft Robotics ( IF 6.4 ) Pub Date : 2024-04-17 , DOI: 10.1089/soro.2023.0103 Xiaodong Feng 1, 2, 3 , Ji Xu 1 , Jingyao Zhang 2 , Makoto Ohsaki 2 , Yang Zhao 1, 3 , Yaozhi Luo 3 , Yao Chen 4 , Xian Xu 3
Affiliation
Spherical movable tensegrity robots, resorting to the intrinsic hallmark of being lightweight and resilient, have exhibited tremendous potential in exploring unpredictable terrains and extreme environments where traditional robots often struggle. The geometry of spherical tensegrities is suitable for rolling locomotion, which guarantees the system to react to changing demands, navigate unexplored terrain, and perform missions even after suffering massive damage. The objective of this article is to enrich the type of spherical movable tensegrity robots with multiple kinematic gait patterns and to gain superior motion paths that are in conformity with the intrinsic features of structural rolling locomotion. Aiming at this purpose, three 12-rod spherical tensegrities with multi-gait patterns are investigated, and the dynamic simulation on independent (or evolutionary) gait patterns is conducted and testified on ADAMS. The routing spaces and the blind zones formed by single kinematic gait are compared to assess the suitability of the assigned kinematic gait pattern. Accordingly, we develop a trajectory planning method with the embedding of the steering control strategy into a modified rapidly exploring random tree (MRRT) algorithm to produce qualified marching routes. In the meantime, two momentous evaluation indictors, applicable to multi-gaits tensegrities, are introduced in searching the corresponding optimal gait patterns that conform to specified needs. The techniques are illustrated and validated in simulation with comparisons on several prototypes of tensegrity robots, indicating that the proposed method is a viable means of attaining marching routes on rolling locomotion of spherical movable tensegrity robots.
中文翻译:
具有多步态模式的球形可移动张拉机器人滚动运动的轨迹规划。
球形可移动张拉力机器人采用轻质和弹性的内在特征,在探索传统机器人经常难以应对的不可预测的地形和极端环境方面表现出了巨大的潜力。球形张拉力的几何形状适用于滚动运动,这保证了系统能够对不断变化的需求做出反应,在未开发的地形中导航,并在遭受巨大损坏后执行任务。本文的目的是丰富具有多种运动步态模式的球形可移动张拉整体机器人的类型,并获得符合结构滚动运动内在特征的卓越运动路径。为此,研究了 3 个具有多步态模式的 12 杆球面张拉力,并在 ADAMS 上对独立(或进化)步态模式进行了动力学模拟和验证。比较布线空间和由单一运动步态形成的盲区,以评估分配的运动学步态模式的适用性。因此,我们开发了一种轨迹规划方法,将转向控制策略嵌入到改进的快速探索随机树 (MRRT) 算法中,以产生合格的行军路线。同时,引入了两个适用于多步态张力的重要评价指标,用于搜索符合特定需求的相应最佳步态模式。这些技术在仿真中进行了说明和验证,并与张拉整体机器人的几个原型进行了比较,表明所提出的方法是一种在球形可移动张拉整体机器人的滚动运动中获得行进路线的可行方法。
更新日期:2024-04-17
中文翻译:
具有多步态模式的球形可移动张拉机器人滚动运动的轨迹规划。
球形可移动张拉力机器人采用轻质和弹性的内在特征,在探索传统机器人经常难以应对的不可预测的地形和极端环境方面表现出了巨大的潜力。球形张拉力的几何形状适用于滚动运动,这保证了系统能够对不断变化的需求做出反应,在未开发的地形中导航,并在遭受巨大损坏后执行任务。本文的目的是丰富具有多种运动步态模式的球形可移动张拉整体机器人的类型,并获得符合结构滚动运动内在特征的卓越运动路径。为此,研究了 3 个具有多步态模式的 12 杆球面张拉力,并在 ADAMS 上对独立(或进化)步态模式进行了动力学模拟和验证。比较布线空间和由单一运动步态形成的盲区,以评估分配的运动学步态模式的适用性。因此,我们开发了一种轨迹规划方法,将转向控制策略嵌入到改进的快速探索随机树 (MRRT) 算法中,以产生合格的行军路线。同时,引入了两个适用于多步态张力的重要评价指标,用于搜索符合特定需求的相应最佳步态模式。这些技术在仿真中进行了说明和验证,并与张拉整体机器人的几个原型进行了比较,表明所提出的方法是一种在球形可移动张拉整体机器人的滚动运动中获得行进路线的可行方法。