当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Barrier-function based adaptive trajectory tracking control for high-order nonlinear systems with collision avoidance
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.amc.2024.129004 Lili Zhang , Chenglong Liu , Liwei An
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.amc.2024.129004 Lili Zhang , Chenglong Liu , Liwei An
This paper considers the problem of trajectory tracking and collision avoidance for a class of high-order nonlinear strict feedback systems with unknown nonlinearities. The main issue is how to ensure collision avoidance and tracking performance simultaneously in the presence of unknown nonlinear functions. To address the issue, an integral-multiplicative barrier Lyapunov function (BLF) is integrated into the backstepping procedure to remove the dynamic mismatching issue of the existing SUM-type BLF. It has been proven that the proposed adaptive approach ensures both collision avoidance and tracking performance of high-order nonlinear systems in multi-obstacle environments, and all the signals in the closed-loop system are uniformly ultimately bounded (UUB). Simulation results confirm the effectiveness of the proposed method.
中文翻译:
基于障碍函数的高阶非线性系统自适应轨迹跟踪控制及避碰
本文考虑一类非线性未知的高阶非线性严格反馈系统的轨迹跟踪和碰撞避免问题。主要问题是如何在存在未知非线性函数的情况下同时保证防撞和跟踪性能。为了解决这个问题,积分乘法障碍李亚普诺夫函数(BLF)被集成到反步过程中,以消除现有 SUM 型 BLF 的动态失配问题。事实证明,所提出的自适应方法保证了多障碍环境下高阶非线性系统的防撞和跟踪性能,并且闭环系统中的所有信号都是一致最终有界(UUB)的。仿真结果证实了该方法的有效性。
更新日期:2024-08-16
中文翻译:
基于障碍函数的高阶非线性系统自适应轨迹跟踪控制及避碰
本文考虑一类非线性未知的高阶非线性严格反馈系统的轨迹跟踪和碰撞避免问题。主要问题是如何在存在未知非线性函数的情况下同时保证防撞和跟踪性能。为了解决这个问题,积分乘法障碍李亚普诺夫函数(BLF)被集成到反步过程中,以消除现有 SUM 型 BLF 的动态失配问题。事实证明,所提出的自适应方法保证了多障碍环境下高阶非线性系统的防撞和跟踪性能,并且闭环系统中的所有信号都是一致最终有界(UUB)的。仿真结果证实了该方法的有效性。