当前位置:
X-MOL 学术
›
Atmos. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A multi-sensor drought index for improved agricultural drought monitoring and risk assessment in the heterogeneous landscapes of the China–Pakistan Economic Corridor (CPEC)
Atmospheric Research ( IF 4.5 ) Pub Date : 2024-08-12 , DOI: 10.1016/j.atmosres.2024.107633 Muhammad Ismail , Yi Li , Ben Niu , Mubashir Ali Ghaffar , Muhammad Amjad Saleem , Kadambot H.M. Siddique
Atmospheric Research ( IF 4.5 ) Pub Date : 2024-08-12 , DOI: 10.1016/j.atmosres.2024.107633 Muhammad Ismail , Yi Li , Ben Niu , Mubashir Ali Ghaffar , Muhammad Amjad Saleem , Kadambot H.M. Siddique
Droughts cause significant economic damage worldwide. Evaluating their impacts on crop yield and water resources can help mitigate these losses. Using single variables such as precipitation, temperature, the soil moisture condition index (SMCI) and the vegetation condition index (VCI) to estimate drought impacts does not provide sufficient information on these complex conditions. Therefore, this study uses station-based and remote-sensing-based data to develop new composite drought indexes (CDIs), including the principal component analysis drought index (PSDI) and the gradient boosting method drought index (GBMDI). The first dataset includes historical observations of the standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), and the self-calibrated Palmer drought severity index (SC-PDSI) at the 1-, 3-, 6-, and 12-month timescales. The second dataset consists of remote-sensing-based data including the VCI, SMCI, temperature condition index (TCI), and precipitation condition index (PCI). We validated the results of PSDI and GBMDI by comparing them with historical drought events, in-situ drought indices, and annual winter wheat crop yield data from 2003 to 2022 using a regression model. Our temporal analysis revealed extreme to severe drought events during1990s and 2010s. GBMDI typically aligned with actual drought events and exhibited stronger correlations with in-situ drought indices than PSDI. We observed that drought intensity in winter were more severe than in summer. GBMDI was the most effective method, followed by PSDI, for assessing drought impacts on winter wheat yields. Thus, the proposed integrated monitoring framework and indexes offered a valuable and innovative approach to addressing the complexities of agricultural drought, particularly in evaluating its effects.
中文翻译:
用于改善中巴经济走廊(CPEC)异质景观农业干旱监测和风险评估的多传感器干旱指数
干旱在全球范围内造成重大经济损失。评估它们对作物产量和水资源的影响有助于减轻这些损失。使用降水、温度、土壤湿度状况指数(SMCI)和植被状况指数(VCI)等单一变量来估计干旱影响并不能提供有关这些复杂条件的足够信息。因此,本研究利用站基和遥感数据开发新的综合干旱指数(CDI),包括主成分分析干旱指数(PSDI)和梯度提升法干旱指数(GBMDI)。第一个数据集包括标准化降水指数 (SPI)、标准化降水蒸散指数 (SPEI) 和自校准帕尔默干旱严重程度指数 (SC-PDSI) 在 1、3、6 和 12 的历史观测值- 月的时间表。第二个数据集由基于遥感的数据组成,包括 VCI、SMCI、温度条件指数 (TCI) 和降水条件指数 (PCI)。我们使用回归模型将 PSDI 和 GBMDI 的结果与历史干旱事件、原位干旱指数和 2003 年至 2022 年冬小麦作物产量数据进行比较,验证了它们的结果。我们的时间分析揭示了 20 世纪 90 年代和 2010 年代的极端到严重干旱事件。 GBMDI 通常与实际干旱事件一致,并且与原位干旱指数的相关性比 PSDI 更强。我们观察到冬季干旱强度比夏季更严重。在评估干旱对冬小麦产量的影响时,GBMDI 是最有效的方法,其次是 PSDI。 因此,拟议的综合监测框架和指数为解决农业干旱的复杂性,特别是评估其影响提供了一种有价值的创新方法。
更新日期:2024-08-12
中文翻译:
用于改善中巴经济走廊(CPEC)异质景观农业干旱监测和风险评估的多传感器干旱指数
干旱在全球范围内造成重大经济损失。评估它们对作物产量和水资源的影响有助于减轻这些损失。使用降水、温度、土壤湿度状况指数(SMCI)和植被状况指数(VCI)等单一变量来估计干旱影响并不能提供有关这些复杂条件的足够信息。因此,本研究利用站基和遥感数据开发新的综合干旱指数(CDI),包括主成分分析干旱指数(PSDI)和梯度提升法干旱指数(GBMDI)。第一个数据集包括标准化降水指数 (SPI)、标准化降水蒸散指数 (SPEI) 和自校准帕尔默干旱严重程度指数 (SC-PDSI) 在 1、3、6 和 12 的历史观测值- 月的时间表。第二个数据集由基于遥感的数据组成,包括 VCI、SMCI、温度条件指数 (TCI) 和降水条件指数 (PCI)。我们使用回归模型将 PSDI 和 GBMDI 的结果与历史干旱事件、原位干旱指数和 2003 年至 2022 年冬小麦作物产量数据进行比较,验证了它们的结果。我们的时间分析揭示了 20 世纪 90 年代和 2010 年代的极端到严重干旱事件。 GBMDI 通常与实际干旱事件一致,并且与原位干旱指数的相关性比 PSDI 更强。我们观察到冬季干旱强度比夏季更严重。在评估干旱对冬小麦产量的影响时,GBMDI 是最有效的方法,其次是 PSDI。 因此,拟议的综合监测框架和指数为解决农业干旱的复杂性,特别是评估其影响提供了一种有价值的创新方法。