当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast implicit update schemes for Cahn–Hilliard-type gradient flow in the context of Fourier-spectral methods
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-08-17 , DOI: 10.1016/j.cma.2024.117220
A. Krischok , B. Yaraguntappa , M.-A. Keip

This work discusses a way of allowing fast implicit update schemes for the temporal discretization of phase-field models for gradient flow problems that employ Fourier-spectral methods for their spatial discretization. Through the repeated application of the Sherman–Morrison formula we provide a rule for approximations of the inverted tangent matrix of the corresponding Newton–Raphson method with a selectable order. Since the representation of this inversion is exact for a sufficiently high approximation order, the proposed scheme is shown to provide a fixed-point-type iterative solver for gradient flow problems that require the solution of linear systems in the context of an implicit time-integration. While the proposed scheme is applicable to general gradient flow phase-field models, we discuss the scheme in the context of the Cahn–Hilliard equation, the Swift–Hohenberg equation, and the phase-field crystal equation for which we demonstrate the performance of the proposed method in comparison with classical solvers.

中文翻译:


傅里叶谱法背景下 Cahn-Hilliard 型梯度流的快速隐式更新方案



这项工作讨论了一种允许快速隐式更新方案的方法,用于梯度流问题的相场模型的时间离散化,这些模型采用傅里叶谱方法进行空间离散化。通过重复应用 Sherman-Morrison 公式,我们提供了一个具有可选顺序的相应 Newton-Raphson 方法的倒切矩阵的近似规则。由于这种反演的表示对于足够高的近似阶数是精确的,因此所提出的方案被证明为需要在隐式时间积分背景下求解线性系统的梯度流问题提供了一个定点类型的迭代求解器。虽然所提出的方案适用于一般的梯度流相场模型,但我们在 Cahn-Hilliard 方程、Swift-Hohenberg 方程和相场晶体方程的背景下讨论了该方案,我们展示了所提出的方法与传统求解器相比的性能。
更新日期:2024-08-17
down
wechat
bug