当前位置:
X-MOL 学术
›
Comput. Math. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nonconforming quadrilateral finite element analysis for the nonlinear Ginzburg-Landau equation
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-07-26 , DOI: 10.1016/j.camwa.2024.07.020 Huazhao Xie , Dongyang Shi , Qian Liu
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-07-26 , DOI: 10.1016/j.camwa.2024.07.020 Huazhao Xie , Dongyang Shi , Qian Liu
This paper is devoted to the study of nonlinear Ginzburg-Landau equation (GLE) with the nonconforming modified quasi-Wilson quadrilateral finite element. Based on the special property of this element, that is its consistency error can reach order in the broken -norm when the exact solution belongs to , and by use of the interpolated postprocessing technique, the superclose and superconvergence estimates are obtained for the semi-discrete scheme with order , the Backward-Euler (B-E) fully-discrete scheme with order , and the Crank-Nicolson (C-N) fully-discrete scheme with order , respectively. In addition, a numerical example is provided to verify the theoretical analysis. Here is the mesh size and △ is the time step.
中文翻译:
非线性Ginzburg-Landau方程的非相容四边形有限元分析
本文致力于研究非协调修正拟Wilson四边形有限元的非线性Ginzburg-Landau方程(GLE)。基于该单元的特殊性质,即当精确解属于 时,其一致性误差可达到破范量级,利用插值后处理技术,获得了半离散模型的超接近和超收敛估计。分别为阶数为 的方案、阶数为 的后向欧拉 (BE) 全离散格式和阶数为 的 Crank-Nicolson (CN) 全离散格式。此外,还提供了数值算例来验证理论分析。这里是网格尺寸,△是时间步长。
更新日期:2024-07-26
中文翻译:
非线性Ginzburg-Landau方程的非相容四边形有限元分析
本文致力于研究非协调修正拟Wilson四边形有限元的非线性Ginzburg-Landau方程(GLE)。基于该单元的特殊性质,即当精确解属于 时,其一致性误差可达到破范量级,利用插值后处理技术,获得了半离散模型的超接近和超收敛估计。分别为阶数为 的方案、阶数为 的后向欧拉 (BE) 全离散格式和阶数为 的 Crank-Nicolson (CN) 全离散格式。此外,还提供了数值算例来验证理论分析。这里是网格尺寸,△是时间步长。