当前位置:
X-MOL 学术
›
Comput. Math. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A generalized energy eigenvalue problem for effectively solving the confined electron states in quantum semiconductor structures via boundary integral analysis
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-07-22 , DOI: 10.1016/j.camwa.2024.07.010 J.D. Phan , A.-V. Phan
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-07-22 , DOI: 10.1016/j.camwa.2024.07.010 J.D. Phan , A.-V. Phan
This paper introduces a novel approach for the efficient determination of confined electron states in quantum semiconductor structures through the introduction of a generalized energy eigenvalue problem formulated within the framework of boundary integral analysis. The proposed method enables the direct determination of the energy eigenvalues and normalized wavefunctions for bound quantum states. The novel technique aims to address the challenges associated with efficiently modeling the behavior of electrons within confined regions, offering insights into optimizing the performance of a wide range of quantum semiconductor structures. By employing boundary integral techniques, the paper establishes an efficient numerical framework that effectively addresses the complexity of quantum confinement effects. The methodology is demonstrated through numerical simulations, showcasing its effectiveness and accuracy in predicting electron states within different quantum wire structures.
中文翻译:
通过边界积分分析有效求解量子半导体结构中受限电子态的广义能量本征值问题
本文介绍了一种通过引入在边界积分分析框架内制定的广义能量本征值问题来有效确定量子半导体结构中受限电子态的新方法。所提出的方法能够直接确定束缚量子态的能量本征值和归一化波函数。这项新技术旨在解决与有效模拟有限区域内电子行为相关的挑战,为优化各种量子半导体结构的性能提供见解。通过采用边界积分技术,本文建立了一个有效的数值框架,有效解决了量子限域效应的复杂性。该方法通过数值模拟进行了演示,展示了其在预测不同量子线结构内的电子状态方面的有效性和准确性。
更新日期:2024-07-22
中文翻译:
通过边界积分分析有效求解量子半导体结构中受限电子态的广义能量本征值问题
本文介绍了一种通过引入在边界积分分析框架内制定的广义能量本征值问题来有效确定量子半导体结构中受限电子态的新方法。所提出的方法能够直接确定束缚量子态的能量本征值和归一化波函数。这项新技术旨在解决与有效模拟有限区域内电子行为相关的挑战,为优化各种量子半导体结构的性能提供见解。通过采用边界积分技术,本文建立了一个有效的数值框架,有效解决了量子限域效应的复杂性。该方法通过数值模拟进行了演示,展示了其在预测不同量子线结构内的电子状态方面的有效性和准确性。