当前位置:
X-MOL 学术
›
Agric. For. Meteorol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Soil moisture plays an increasingly important role in constraining vegetation productivity in China over the past two decades
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2024-08-14 , DOI: 10.1016/j.agrformet.2024.110193 Guizeng Qi , Dunxian She , Jun Xia , Jinxi Song , Wenzhe Jiao , Jiayu Li , Zheqiong Liu
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2024-08-14 , DOI: 10.1016/j.agrformet.2024.110193 Guizeng Qi , Dunxian She , Jun Xia , Jinxi Song , Wenzhe Jiao , Jiayu Li , Zheqiong Liu
Decreasing soil moisture (SM) and increasing vapor pressure deficit (VPD) are the main drought affecting factors of terrestrial vegetation productivity. Nevertheless, the impact of continued warming on the changing trend of SM and VPD constraints affecting vegetation productivity remains uncertain. Understanding the complex interactive effects of SM and VPD on vegetation is crucial for assessing drought risk and its ecological implications. This study aims to comprehensively quantify the trends in the respective contributions of SM and VPD to vegetation ecosystem productivity in China from 2000 to 2022. The results showed that both low SM and high VPD had significant inhibitory effects on gross primary productivity (GPP) anomaly. Furthermore, the magnitude of water stress on vegetation productivity increases, and is accompanied by a gradual expansion of areas experiencing significant water deficit during the study period. By decoupling the interactions between SM and VPD, we found that SM and VPD were the primary influencing factor of water stress on vegetation productivity, accounting for 60 % and 40 % of the total vegetated area, respectively. Notably, the effects of SM and VPD on GPP exhibited significant variations across different vegetation and climate gradients. The amount of land dominated by the SM constraint expanded, and SM gradually played an increasingly important role in the water stress of GPP over the past two decades. The results of the study are important to accurately assess the interrelationship between vegetation and climate in the context of climate change.
更新日期:2024-08-14