当前位置:
X-MOL 学术
›
Agric. For. Meteorol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The applicability of a SIF-based mechanistic model for estimating GPP at the canopy scale
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2024-08-14 , DOI: 10.1016/j.agrformet.2024.110192 Yanping Liu , Zhaoyong Hu , Genxu Wang , Arthur Gessler , Shouqin Sun
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2024-08-14 , DOI: 10.1016/j.agrformet.2024.110192 Yanping Liu , Zhaoyong Hu , Genxu Wang , Arthur Gessler , Shouqin Sun
Mechanistically linking gross primary productivity (GPP) and sun-induced chlorophyll fluorescence (SIF) is an essential step to unleash the full potential of SIF for remote sensing-based predictions of GPP across biomes, climates, and spatiotemporal scales. The latest SIF-based mechanistic light response model that includes the fraction of open photosystem II reaction centers as key parameter (qMLR-SIF model), can accurately reproduce leaf-scale photosynthesis under various conditions. However, it remains unclear to what extent the qMLR-SIF model is suitable for estimating GPP at larger scales such as the canopy scale. Therefore, canopy-scale data of tower-based far-red SIF, GPP and key environmental variables from 10 study sites were collected to analyze the SIF-GPP relationship and to compare the qMLR-SIF model with the widely used Farquhar, von Caemmerer, Berry (FvCB) model and with a light use efficiency (LUE) model for different plant functional types (PFTs), photosynthetic pathways (C3 and C4 ), and temporal scales (hourly, daily and 4-day). Results showed that the nonlinear SIF-GPP relationship existed in all PFTs and the degree of linearity increased at larger temporal scales. The qMLR-SIF model exhibited wide applicability to quantify canopy GPP for different PFTs (R2 = 0.55–0.80, RMSE = 2.72–11.03 μmol CO2 m-2 s-1 ), photosynthetic pathways (R2 = 0.70–0.78, RMSE = 5.29–9.05 μmol CO2 m-2 s-1 ) and temporal scales (R2 = 0.82–0.97, RMSE = 3.42–8.32 μmol CO2 m-2 s-1 ). Compared with the two other models, the qMLR-SIF model performed best overall, which is mainly due to its simpler model structure and the mechanistic link between SIF and photosynthesis. Particularly, the qMLR-SIF model could more accurately estimate GPP in C4 species, with higher R2 (0.78) and lower RMSE (8.46 μmol CO2 m-2 s-1 ). These findings highlight the advantages of the qMLR-SIF model in GPP estimation at the canopy scale, showing its potential in applications at regional and global scales.
中文翻译:
基于 SIF 的机械模型在冠层尺度 GPP 估算中的适用性
在机械上将总初级生产力 (GPP) 和太阳诱导的叶绿素荧光 (SIF) 联系起来是充分发挥 SIF 潜力的重要一步,用于基于遥感的跨生物群落、气候和时空尺度的 GPP 预测。最新的基于SIF的机械光响应模型以开放光系统II反应中心的分数作为关键参数(qMLR-SIF模型),可以准确地再现各种条件下的叶尺度光合作用。然而,目前尚不清楚 qMLR-SIF 模型在多大程度上适合估计更大尺度(例如冠层尺度)的 GPP。因此,收集了10个研究点的塔基远红SIF、GPP和关键环境变量的冠层尺度数据,分析SIF-GPP关系,并将qMLR-SIF模型与广泛使用的Farquhar、von Caemmerer、 Berry (FvCB) 模型和针对不同植物功能类型 (PFT)、光合途径(C3 和 C4)和时间尺度(每小时、每天和 4 天)的光利用效率 (LUE) 模型。结果表明,所有 PFT 中都存在非线性 SIF-GPP 关系,并且线性程度在较大时间尺度上增加。 qMLR-SIF 模型在量化冠层 GPP 的不同 PFT(R2 = 0.55–0.80,RMSE = 2.72–11.03 μmol CO2 m-2 s-1)、光合作用途径(R2 = 0.70–0.78,RMSE = 5.29–)方面表现出广泛的适用性。 9.05 μmol CO2 m-2 s-1)和时间尺度(R2 = 0.82–0.97,RMSE = 3.42–8.32 μmol CO2 m-2s-1)。与其他两个模型相比,qMLR-SIF模型总体表现最好,这主要是由于其更简单的模型结构以及SIF与光合作用之间的机制联系。特别是,qMLR-SIF 模型可以更准确地估计 C4 物种的 GPP,具有更高的 R2(0.78) 和较低的 RMSE (8.46 μmol CO2 m-2s-1)。这些发现凸显了 qMLR-SIF 模型在冠层尺度 GPP 估计中的优势,显示了其在区域和全球尺度的应用潜力。
更新日期:2024-08-14
中文翻译:
基于 SIF 的机械模型在冠层尺度 GPP 估算中的适用性
在机械上将总初级生产力 (GPP) 和太阳诱导的叶绿素荧光 (SIF) 联系起来是充分发挥 SIF 潜力的重要一步,用于基于遥感的跨生物群落、气候和时空尺度的 GPP 预测。最新的基于SIF的机械光响应模型以开放光系统II反应中心的分数作为关键参数(qMLR-SIF模型),可以准确地再现各种条件下的叶尺度光合作用。然而,目前尚不清楚 qMLR-SIF 模型在多大程度上适合估计更大尺度(例如冠层尺度)的 GPP。因此,收集了10个研究点的塔基远红SIF、GPP和关键环境变量的冠层尺度数据,分析SIF-GPP关系,并将qMLR-SIF模型与广泛使用的Farquhar、von Caemmerer、 Berry (FvCB) 模型和针对不同植物功能类型 (PFT)、光合途径(C3 和 C4)和时间尺度(每小时、每天和 4 天)的光利用效率 (LUE) 模型。结果表明,所有 PFT 中都存在非线性 SIF-GPP 关系,并且线性程度在较大时间尺度上增加。 qMLR-SIF 模型在量化冠层 GPP 的不同 PFT(R2 = 0.55–0.80,RMSE = 2.72–11.03 μmol CO2 m-2 s-1)、光合作用途径(R2 = 0.70–0.78,RMSE = 5.29–)方面表现出广泛的适用性。 9.05 μmol CO2 m-2 s-1)和时间尺度(R2 = 0.82–0.97,RMSE = 3.42–8.32 μmol CO2 m-2s-1)。与其他两个模型相比,qMLR-SIF模型总体表现最好,这主要是由于其更简单的模型结构以及SIF与光合作用之间的机制联系。特别是,qMLR-SIF 模型可以更准确地估计 C4 物种的 GPP,具有更高的 R2(0.78) 和较低的 RMSE (8.46 μmol CO2 m-2s-1)。这些发现凸显了 qMLR-SIF 模型在冠层尺度 GPP 估计中的优势,显示了其在区域和全球尺度的应用潜力。