当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In situ/Operando Investigation for Heterogeneous Electro-Catalysts: From Model Catalysts to State-of-the-Art Catalysts
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-08-17 , DOI: 10.1021/acsenergylett.4c01488 Jingting Song 1, 2 , Zheng-Xin Qian 1 , Ji Yang 1 , Xiu-Mei Lin 3 , Qingchi Xu 1 , Jian-Feng Li 1, 3
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-08-17 , DOI: 10.1021/acsenergylett.4c01488 Jingting Song 1, 2 , Zheng-Xin Qian 1 , Ji Yang 1 , Xiu-Mei Lin 3 , Qingchi Xu 1 , Jian-Feng Li 1, 3
Affiliation
Electrochemical reactions, including water splitting, oxygen reduction, hydrogen oxidation, carbon dioxide reduction, nitrogen oxide reduction, etc., are critical for sustainable energy conversion and storage. Achieving high efficiency in these reactions requires catalysts with superior activity, selectivity, and stability, often realized through nanostructured metal catalysts. However, practical challenges such as low selectivity and catalytic degradation persist. In situ and operando characterization techniques offer real-time insights into catalyst behavior under reaction conditions, enabling a deeper understanding of structure–performance relationships and, therefore, guiding the design and optimization of electro-catalysts. This review discusses the common in situ/operando techniques, highlights their applications in model catalysts, including single-atom and single-crystal catalysts, and further explores their combinational analysis to study practical complex nanocatalysts. Finally, we provide suggestions and perspectives on the development of the in situ/operando techniques to further advance the field of electrochemical catalysis.
中文翻译:
多相电催化剂的原位/操作研究:从模型催化剂到最先进的催化剂
电化学反应,包括水分解、氧气还原、氢气氧化、二氧化碳还原、氮氧化物还原等,对于可持续能源转换和储存至关重要。要在这些反应中实现高效率,需要具有优异活性、选择性和稳定性的催化剂,这通常通过纳米结构金属催化剂来实现。然而,低选择性和催化降解等实际挑战仍然存在。原位和操作表征技术可以实时洞察反应条件下的催化剂行为,从而能够更深入地了解结构与性能之间的关系,从而指导电催化剂的设计和优化。本综述讨论了常见的原位/操作技术,重点介绍了它们在模型催化剂(包括单原子和单晶催化剂)中的应用,并进一步探索了它们的组合分析以研究实用的复杂纳米催化剂。最后,我们就原位/操作技术的发展提供建议和观点,以进一步推动电化学催化领域的发展。
更新日期:2024-08-17
中文翻译:
多相电催化剂的原位/操作研究:从模型催化剂到最先进的催化剂
电化学反应,包括水分解、氧气还原、氢气氧化、二氧化碳还原、氮氧化物还原等,对于可持续能源转换和储存至关重要。要在这些反应中实现高效率,需要具有优异活性、选择性和稳定性的催化剂,这通常通过纳米结构金属催化剂来实现。然而,低选择性和催化降解等实际挑战仍然存在。原位和操作表征技术可以实时洞察反应条件下的催化剂行为,从而能够更深入地了解结构与性能之间的关系,从而指导电催化剂的设计和优化。本综述讨论了常见的原位/操作技术,重点介绍了它们在模型催化剂(包括单原子和单晶催化剂)中的应用,并进一步探索了它们的组合分析以研究实用的复杂纳米催化剂。最后,我们就原位/操作技术的发展提供建议和观点,以进一步推动电化学催化领域的发展。