当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Emergent Optical Resonances in Atomically Phase-Patterned Semiconducting Monolayers of WS2
ACS Photonics ( IF 6.5 ) Pub Date : 2024-08-16 , DOI: 10.1021/acsphotonics.4c00983 John M. Woods 1 , Saroj B. Chand 1 , Enrique Mejia 1 , Ashok Adhikari 1 , Takashi Taniguchi 2 , Kenji Watanabe 3 , Johannes Flick 4, 5, 6 , Gabriele Grosso 1, 6
ACS Photonics ( IF 6.5 ) Pub Date : 2024-08-16 , DOI: 10.1021/acsphotonics.4c00983 John M. Woods 1 , Saroj B. Chand 1 , Enrique Mejia 1 , Ashok Adhikari 1 , Takashi Taniguchi 2 , Kenji Watanabe 3 , Johannes Flick 4, 5, 6 , Gabriele Grosso 1, 6
Affiliation
Atomic-scale control of light–matter interactions represents the ultimate frontier for many applications in photonics and quantum technology. Two-dimensional semiconductors, including transition-metal dichalcogenides, are a promising platform to achieve such control due to the combination of an atomically thin geometry and convenient photophysical properties. Here, we demonstrate that a variety of durable polymorphic structures can be combined to generate additional optical resonances beyond the standard excitons. We theoretically predict and experimentally show that atomic-sized patches of the 1T phase within the 1H matrix form unique electronic bands that lead to the emergence of robust optical resonances with strong absorption, circularly polarized emission, and long radiative lifetimes. The atomic manipulation of two-dimensional semiconductors opens unexplored scenarios for light harvesting devices and exciton-based photonics.
中文翻译:
WS2 原子相图案半导体单层中的突现光学共振
光与物质相互作用的原子尺度控制代表了光子学和量子技术许多应用的最终前沿。二维半导体,包括过渡金属二硫属化物,由于结合了原子薄的几何形状和方便的光物理特性,是实现这种控制的有前途的平台。在这里,我们证明了可以组合各种耐用的多晶型结构来产生超出标准激子的额外光学共振。我们从理论上预测并通过实验证明,1H 矩阵内原子大小的 1T 相斑块会形成独特的电子能带,从而导致出现具有强吸收、圆偏振发射和长辐射寿命的鲁棒光学共振。二维半导体的原子操纵为光捕获设备和基于激子的光子学开辟了未经探索的场景。
更新日期:2024-08-16
中文翻译:
WS2 原子相图案半导体单层中的突现光学共振
光与物质相互作用的原子尺度控制代表了光子学和量子技术许多应用的最终前沿。二维半导体,包括过渡金属二硫属化物,由于结合了原子薄的几何形状和方便的光物理特性,是实现这种控制的有前途的平台。在这里,我们证明了可以组合各种耐用的多晶型结构来产生超出标准激子的额外光学共振。我们从理论上预测并通过实验证明,1H 矩阵内原子大小的 1T 相斑块会形成独特的电子能带,从而导致出现具有强吸收、圆偏振发射和长辐射寿命的鲁棒光学共振。二维半导体的原子操纵为光捕获设备和基于激子的光子学开辟了未经探索的场景。