当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Leveraging polymer architecture design with acylamino functionalization for electrolytes to enable highly durable lithium metal batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-16 , DOI: 10.1039/d4ee02218a Jiayu Zheng 1 , Lingyan Duan 1 , Hang Ma 2 , Qi An 1 , Qing Liu 1 , Yongjiang Sun 1 , Genfu Zhao 1 , Hanlin Tang 1 , Yang Li 1 , Shimin Wang 1 , Qijun Xu 1 , Lilian Wang 1 , Hong Guo 1, 3
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-16 , DOI: 10.1039/d4ee02218a Jiayu Zheng 1 , Lingyan Duan 1 , Hang Ma 2 , Qi An 1 , Qing Liu 1 , Yongjiang Sun 1 , Genfu Zhao 1 , Hanlin Tang 1 , Yang Li 1 , Shimin Wang 1 , Qijun Xu 1 , Lilian Wang 1 , Hong Guo 1, 3
Affiliation
Polymer electrolytes are considered one of the most pragmatic choices for achieving lithium metal batteries (LMBs) with enhanced energy density and safety. Nevertheless, unsatisfactory comprehensive performance in terms of inadequate mechanical properties, sluggish Li+ transport kinetics, and inferior electrode/electrolyte interfacial stability significantly constrain their practical utility. Herein, a rational molecular-level design is proposed to construct a novel polymer framework for gel polymer electrolytes (GPEs), which is accomplished by incorporating abundant acylamino-sites to establish a subtle hierarchical supramolecular network with permanent chemical crosslinking and reversible hydrogen bonding. The ingenious network combined with soft chain moiety regulation endows GPEs with highly enhanced mechanical strength and adaptable flexibility. Furthermore, the involvement of the unique polymer skeleton creates fast and reversible lanes for lithium-ion transport, with significant contributions from the acylamino sites and the pre-desolvation effect of the whole polymer matrix. Besides, the formation of favorable interphase compositions is conducive to dual-reinforced stable interfaces. Due to the ideal combination of accelerated Li+ transport and enhanced interfacial stability, an LFP||Li cell assembled with acylamino-functionalized GPEs exhibits an impressively long lifespan with capacity retention of 96.5% over 850 cycles at 1C, and an LCO||Li cell can maintain a capacity retention of 96.8% after 300 cycles at 1C. This study highlights the significance of bulk electrolytes and interface regulation in tandem and supplies novel insights into rational design for polymer architecture, ramping up the competitiveness of yielded electrolytes for prospective applications in the LMB realm.
中文翻译:
利用电解质的酰氨基官能化聚合物架构设计来实现高度耐用的锂金属电池
聚合物电解质被认为是实现具有更高能量密度和安全性的锂金属电池(LMB)的最实用选择之一。然而,机械性能不足、Li +传输动力学缓慢以及电极/电解质界面稳定性较差等综合性能不理想,严重限制了其实际应用。在此,提出了一种合理的分子水平设计来构建凝胶聚合物电解质(GPE)的新型聚合物框架,这是通过结合丰富的酰氨基位点来建立具有永久化学交联和可逆氢键的微妙分层超分子网络来实现的。巧妙的网络与软链部分调控相结合,赋予GPE高度增强的机械强度和适应性灵活性。此外,独特的聚合物骨架的参与为锂离子传输创建了快速且可逆的通道,其中酰氨基位点和整个聚合物基质的预去溶剂化效应做出了重大贡献。此外,有利的界面成分的形成有利于双增强稳定界面。由于加速Li +传输和增强界面稳定性的理想结合,用酰氨基功能化GPE组装的LFP||Li电池表现出令人印象深刻的长寿命,在1C下850次循环后容量保持率为96.5%,并且LCO||Li电池在1C下循环300次后容量保持率为96.8%。 这项研究强调了本体电解质和界面调节串联的重要性,并为聚合物结构的合理设计提供了新的见解,从而提高了所生产的电解质在 LMB 领域的潜在应用的竞争力。
更新日期:2024-08-19
中文翻译:
利用电解质的酰氨基官能化聚合物架构设计来实现高度耐用的锂金属电池
聚合物电解质被认为是实现具有更高能量密度和安全性的锂金属电池(LMB)的最实用选择之一。然而,机械性能不足、Li +传输动力学缓慢以及电极/电解质界面稳定性较差等综合性能不理想,严重限制了其实际应用。在此,提出了一种合理的分子水平设计来构建凝胶聚合物电解质(GPE)的新型聚合物框架,这是通过结合丰富的酰氨基位点来建立具有永久化学交联和可逆氢键的微妙分层超分子网络来实现的。巧妙的网络与软链部分调控相结合,赋予GPE高度增强的机械强度和适应性灵活性。此外,独特的聚合物骨架的参与为锂离子传输创建了快速且可逆的通道,其中酰氨基位点和整个聚合物基质的预去溶剂化效应做出了重大贡献。此外,有利的界面成分的形成有利于双增强稳定界面。由于加速Li +传输和增强界面稳定性的理想结合,用酰氨基功能化GPE组装的LFP||Li电池表现出令人印象深刻的长寿命,在1C下850次循环后容量保持率为96.5%,并且LCO||Li电池在1C下循环300次后容量保持率为96.8%。 这项研究强调了本体电解质和界面调节串联的重要性,并为聚合物结构的合理设计提供了新的见解,从而提高了所生产的电解质在 LMB 领域的潜在应用的竞争力。