当前位置:
X-MOL 学术
›
Phys. Rev. X
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bilayer Crystals of Trapped Ions for Quantum Information Processing
Physical Review X ( IF 11.6 ) Pub Date : 2024-08-16 , DOI: 10.1103/physrevx.14.031030 Samarth Hawaldar 1, 2 , Prakriti Shahi 3 , Allison L. Carter 4 , Ana Maria Rey 5, 6, 6 , John J. Bollinger 4 , Athreya Shankar 1
Physical Review X ( IF 11.6 ) Pub Date : 2024-08-16 , DOI: 10.1103/physrevx.14.031030 Samarth Hawaldar 1, 2 , Prakriti Shahi 3 , Allison L. Carter 4 , Ana Maria Rey 5, 6, 6 , John J. Bollinger 4 , Athreya Shankar 1
Affiliation
Trapped-ion systems are a leading platform for quantum information processing, but they are currently limited to 1D and 2D arrays, which imposes restrictions on both their scalability and their range of applications. Here, we propose a path to overcome this limitation by demonstrating that Penning traps can be used to realize remarkably clean bilayer crystals, wherein hundreds of ions self-organize into two well-defined layers. These bilayer crystals are made possible by the inclusion of an anharmonic trapping potential, which is readily implementable with current technology. We study the normal modes of this system and discover salient differences compared to the modes of single-plane crystals. The bilayer geometry and the unique properties of the normal modes open new opportunities—in particular, in quantum sensing and quantum simulation—that are not straightforward in single-plane crystals. Furthermore, we illustrate that it may be possible to extend the ideas presented here to realize multilayer crystals with more than two layers. Our work increases the dimensionality of trapped-ion systems by efficiently utilizing all three spatial dimensions, and it lays the foundation for a new generation of quantum information processing experiments with multilayer 3D crystals of trapped ions. Published by the American Physical Society 2024
中文翻译:
用于量子信息处理的俘获离子双层晶体
囚禁离子系统是量子信息处理的领先平台,但它们目前仅限于 1D 和 2D 阵列,这对其可扩展性和应用范围都造成了限制。在这里,我们提出了一种克服这一限制的途径,证明 Penning 陷阱可用于实现非常干净的双层晶体,其中数百个离子自组织成两个定义明确的层。这些双层晶体是通过包含非谐捕获电位实现的,这很容易用当前的技术实现。我们研究了该系统的法则模式,并发现了与单平面晶体模式相比的显着差异。双层几何形状和正则模态的独特特性为单平面晶体带来了新的机会,特别是在量子传感和量子模拟方面,这些机会并不简单。此外,我们说明有可能扩展这里提出的想法以实现具有两层以上多层的多层晶体。我们的工作通过有效利用所有三个空间维度来增加囚禁离子系统的维数,并为使用囚禁离子的多层 3D 晶体进行新一代量子信息处理实验奠定了基础。 美国物理学会 2024 年出版
更新日期:2024-08-16
中文翻译:
用于量子信息处理的俘获离子双层晶体
囚禁离子系统是量子信息处理的领先平台,但它们目前仅限于 1D 和 2D 阵列,这对其可扩展性和应用范围都造成了限制。在这里,我们提出了一种克服这一限制的途径,证明 Penning 陷阱可用于实现非常干净的双层晶体,其中数百个离子自组织成两个定义明确的层。这些双层晶体是通过包含非谐捕获电位实现的,这很容易用当前的技术实现。我们研究了该系统的法则模式,并发现了与单平面晶体模式相比的显着差异。双层几何形状和正则模态的独特特性为单平面晶体带来了新的机会,特别是在量子传感和量子模拟方面,这些机会并不简单。此外,我们说明有可能扩展这里提出的想法以实现具有两层以上多层的多层晶体。我们的工作通过有效利用所有三个空间维度来增加囚禁离子系统的维数,并为使用囚禁离子的多层 3D 晶体进行新一代量子信息处理实验奠定了基础。 美国物理学会 2024 年出版