当前位置:
X-MOL 学术
›
Ann. Am. Assoc. Geogr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Explicit Incorporation of Spatial Autocorrelation in 3D Deep Learning for Geospatial Object Detection
Annals of the American Association of Geographers ( IF 3.2 ) Pub Date : 2024-08-14 , DOI: 10.1080/24694452.2024.2380898 Tianyang Chen 1 , Wenwu Tang 1, 2 , Craig Allan 1 , Shen-En Chen 3
Annals of the American Association of Geographers ( IF 3.2 ) Pub Date : 2024-08-14 , DOI: 10.1080/24694452.2024.2380898 Tianyang Chen 1 , Wenwu Tang 1, 2 , Craig Allan 1 , Shen-En Chen 3
Affiliation
Three-dimensional (3D) geospatial object detection has become essential for 3D geospatial studies driven by explosive growth in 3D data. It is extremely labor- and cost-intensive, though, as it oft...
中文翻译:
将空间自相关显式结合到 3D 深度学习中进行地理空间目标检测
由于 3D 数据爆炸性增长,三维 (3D) 地理空间对象检测已成为 3D 地理空间研究的关键。然而,这是极其劳动力和成本密集型的,因为它通常...
更新日期:2024-08-17
中文翻译:
将空间自相关显式结合到 3D 深度学习中进行地理空间目标检测
由于 3D 数据爆炸性增长,三维 (3D) 地理空间对象检测已成为 3D 地理空间研究的关键。然而,这是极其劳动力和成本密集型的,因为它通常...