当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Generalization of interfacial thermal conductance based on interfacial phonon localization
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-18 , DOI: 10.1016/j.mtphys.2024.101516 Ibrahim Al Keyyam , Xinwei Wang
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-18 , DOI: 10.1016/j.mtphys.2024.101516 Ibrahim Al Keyyam , Xinwei Wang
Interfacial energy transport is of great engineering and scientific importance. Traditional theoretical treatment based on phonon reflection and transmission only provides qualitative understanding of the interfacial thermal conductance (). In the interface region, the material has gradual (covalent) or abrupt (van de Waals) physical structure transition, each transition features interface-region atomic interactions that are different from those of both adjoining sides. This difference makes the interface-region phonons extremely localized. Here, by constructing an “equivalent interfacial medium” (EIM) that accounts for the extremely localized phonon region, can be described by a universal physical model that is characterized by an “interface characteristic temperature” () and energy carrier transfer time. The EIM model fits widely reported ∼ (: temperature) data with high accuracy and provides remarkable prediction of at different temperatures based on 2–3 experimental data points. Under normalized temperature (/ and interfacial thermal conductance (/), all literature data of can be universally grouped to a single curve. The EIM model provides a solid correlation between and interfacial structure and is expected to significantly advance the physical understanding and design of interfacial energy transport toward high-efficiency energy conversion, transport, and micro/nanoelectronics.
中文翻译:
基于界面声子局域化的界面热导推广
界面能量传输具有重要的工程和科学意义。基于声子反射和透射的传统理论处理只能提供对界面热导的定性理解()。在界面区域,材料具有渐变(共价)或突变(范德华)物理结构转变,每个转变都具有不同于相邻两侧的界面区域原子相互作用的特征。这种差异使得界面区域声子极其局域化。这里,通过构建考虑了极端局域声子区域的“等效界面介质”(EIM),可以通过以“界面特征温度”()和载流子传输时间为特征的通用物理模型来描述。 EIM 模型以高精度拟合广泛报道的~(:温度)数据,并基于 2-3 个实验数据点提供不同温度下的显着预测。在归一化温度(/和界面热导(/)下,所有文献数据都可以普遍归为一条曲线。EIM模型提供了界面结构之间的牢固相关性,有望显着推进界面的物理理解和设计。能源传输向高效能源转换、传输和微/纳米电子学方向发展。
更新日期:2024-07-18
中文翻译:
基于界面声子局域化的界面热导推广
界面能量传输具有重要的工程和科学意义。基于声子反射和透射的传统理论处理只能提供对界面热导的定性理解()。在界面区域,材料具有渐变(共价)或突变(范德华)物理结构转变,每个转变都具有不同于相邻两侧的界面区域原子相互作用的特征。这种差异使得界面区域声子极其局域化。这里,通过构建考虑了极端局域声子区域的“等效界面介质”(EIM),可以通过以“界面特征温度”()和载流子传输时间为特征的通用物理模型来描述。 EIM 模型以高精度拟合广泛报道的~(:温度)数据,并基于 2-3 个实验数据点提供不同温度下的显着预测。在归一化温度(/和界面热导(/)下,所有文献数据都可以普遍归为一条曲线。EIM模型提供了界面结构之间的牢固相关性,有望显着推进界面的物理理解和设计。能源传输向高效能源转换、传输和微/纳米电子学方向发展。