当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Techno-enviro-economic evaluation of decentralized solar ammonia production plant in India under various energy supply scenarios
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-08-12 , DOI: 10.1016/j.enconman.2024.118908
Saket Sahu , Nitish Srivastava , Pratham Arora , Indraneel Natu , Amit C. Bhosale , Rhythm Singh , Dhirendra Tiwari , Vineet Saini

The growing potential for ammonia as an energy carrier and the need to minimize environmental emissions have created a demand for green and decentralized ammonia production (power-to-ammonia) as an alternative to conventional processes. One of many alternatives is to use a Haber-Bosch process where hydrogen is synthesized using electrolysis, and nitrogen is obtained via an air separation unit utilizing electricity from various sources, having their own economic and environmental implications. This study presents a detailed economic and life cycle assessment comparing four different energy supply scenarios in India for decentralized ammonia production based on low pressure (80 bar). A 150 MW polymer electrolyte membrane water electrolyzer (PEMWE) modeled using the Aspen custom modeler is utilized for hydrogen generation, and subsequent ammonia production has been modeled using Aspen Plus®. Energy consumption analysis indicates the power consumption of PEMWE to be 83.59 percent. The minimum levelized cost of ammonia, $1106/ton of ammonia, is obtained by combining a local solar plant and the grid. Moreover, ammonia production using a solar photovoltaic (SPV) plant has the minimum environmental impact, with a global warming potential of 0.305, compared to 13.98 kg of carbon dioxide equivalent produced per kg of ammonia using grid electricity. However, such plants are not economically viable in locations with very low solar availability. Combining an SPV system with battery energy storage has been found to be environmentally viable; however, it is the most expensive alternative of all the scenarios considered. The sale of oxygen can have an added benefit on the cost and may result in a levelized cost of $672/ton of ammonia in 2030 with a projected electrolyzer cost of $264/kW.

中文翻译:


各种能源供应情景下印度分散式太阳能制氨工厂的技术环境经济评估



氨作为能源载体的潜力不断增长,以及最大限度地减少环境排放的需要,催生了对绿色和分散式氨生产(电力转氨)作为传统工艺替代方案的需求。许多替代方案之一是使用哈伯-博世工艺,其中通过电解合成氢气,并利用各种来源的电力通过空气分离装置获得氮气,这具有其自身的经济和环境影响。本研究提出了详细的经济和生命周期评估,比较了印度基于低压(80 巴)的分散式氨生产的四种不同能源供应情景。使用 Aspen 定制建模器建模的 150 MW 聚合物电解质膜水电解槽 (PEMWE) 用于制氢,随后使用 Aspen Plus® 建模后续的氨生产。能耗分析表明PEMWE的能耗为83.59%。氨的最低平准成本为 1106 美元/吨氨,是通过结合当地太阳能发电厂和电网获得的。此外,使用太阳能光伏 (SPV) 工厂生产氨对环境的影响最小,全球变暖潜势为 0.305,而使用电网电力每公斤氨生产的二氧化碳当量为 13.98 公斤。然而,在太阳能利用率非常低的地区,此类发电厂在经济上并不可行。人们发现,将 SPV 系统与电池储能相结合在环境上是可行的;然而,它是所有考虑的方案中最昂贵的替代方案。 出售氧气可以带来额外的成本效益,到 2030 年可能导致每吨氨的平准化成本为 672 美元/吨,预计电解槽成本为 264 美元/千瓦。
更新日期:2024-08-12
down
wechat
bug