当前位置: X-MOL 学术Redox Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe–S cluster homeostasis in Mycobacterium tuberculosis
Redox Biology ( IF 10.7 ) Pub Date : 2024-07-31 , DOI: 10.1016/j.redox.2024.103285
Arshiya Dewan 1 , Charu Jain 2 , Mayashree Das 1 , Ashutosh Tripathi 1 , Ajay Kumar Sharma 2 , Harshit Singh 2 , Nitish Malhotra 3 , Aswin Sai Narain Seshasayee 3 , Harinath Chakrapani 2 , Amit Singh 1
Affiliation  

The ability of () to tolerate nitric oxide (NO) and superoxide (O) produced by phagocytes contributes to its success as a human pathogen. Recombination of NO and O generates peroxynitrite (ONOO), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of toward NO and O is well established, how responds to ONOO remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of during infection. We synthesized a series of compounds that generate both NO and O, which should combine to produce ONOO. From this library, we identified CJ067 that permeates to reliably enhance intracellular ONOO levels. CJ067-exposed strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, (), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO. RNA-sequencing with revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe–4S cluster repair pathway ( operon). CJ067 impaired the activity of the 4Fe–4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of . Work with strains defective in SUF and IscS involved in Fe–S cluster biogenesis pathways showed that both systems cooperatively protect from intracellular ONOO in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, is uniquely sensitive to intracellular ONOO and targeting Fe–S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).

中文翻译:


细胞内过氧亚硝酸盐扰乱结核分枝杆菌的氧化还原平衡、生物能学和 Fe-S 簇稳态



() 能够耐受吞噬细胞产生的一氧化氮 (NO) 和超氧化物 (O),这有助于其作为人类病原体的成功。 NO 和 O 的重组会产生过氧亚硝酸盐 (ONOO),这是一种在活化的巨噬细胞内产生的强氧化剂,可导致多种生物体死亡。虽然对 NO 和 O 的反应已明确,但对 ONOO 的反应仍不清楚。填补这一知识空白对于了解感染期间的持续机制非常重要。我们合成了一系列能够产生 NO 和 O 的化合物,它们应该结合起来产生 ONOO。从该文库中,我们鉴定出 CJ067 能​​够渗透并可靠地增强细胞内 ONOO 水平。 CJ067暴露菌株,包括多重耐药(MDR)和广泛耐药(XDR)临床分离株,表现出剂量依赖性、持久的氧化应激和生长抑制。相比之下,(),一种快速生长的非致病性分枝杆菌物种,响应细胞内 ONOO 维持氧化还原平衡和生长。 RNA 测序显示,CJ067 诱导抗氧化机制、硫代谢、金属稳态和 4Fe-4S 簇修复途径(操纵子)。 CJ067 损害了含有 4Fe-4S 簇的 TCA 循环酶、乌头酸酶的活性,并降低了生物能。对参与 Fe-S 簇生物发生途径的 SUF 和 IscS 缺陷菌株的研究表明,这两个系统在体外协同保护免受细胞内 ONOO 和巨噬细胞感染期间诱导型一氧化氮合酶 (iNOS) 依赖性生长抑制的影响。因此,它对细胞内 ONOO 具有独特的敏感性,并且靶向 Fe-S 簇稳态有望促进 iNOS 依赖性宿主对结核病 (TB) 的免疫。
更新日期:2024-07-31
down
wechat
bug