当前位置: X-MOL 学术Engineering › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superior Mechanical Behavior and Flame Retardancy FRP via a Distribution Controllable 1D/2D Hybrid Nanoclay Synergistic Toughening Strategy
Engineering ( IF 10.1 ) Pub Date : 2024-05-17 , DOI: 10.1016/j.eng.2024.03.017
Zixuan Chen , Tianyu Yu , Zetian Yang , Zhibiao Wei , Yan Li , Weidong Yang , Tao Yu

The incorporation of commercial flame retardants into fiber-reinforced polymer (FRP) composites has been proposed as a potential solution to improve the latter’s poor flame resistance. However, this approach often poses a challenge, as it can adversely affect the mechanical properties of the FRP. Thus, balancing the need for improved flame resistance with the preservation of mechanical integrity remains a complex issue in FRP research. Addressing this critical concern, this study introduces a novel additive system featuring a combination of one-dimensional (1D) hollow tubular structured halloysite nanotubes (HNTs) and two-dimensional (2D) polygonal flake-shaped nano kaolinite (NKN). By employing a 1D/2D hybrid kaolinite nanoclay system, this research aims to simultaneously improve the flame retardancy and mechanical properties. This innovative approach offers several advantages. During combustion and pyrolysis processes, the 1D/2D hybrid kaolinite nanoclay system proves effective in reducing heat release and volatile leaching. Furthermore, the system facilitates the formation of reinforcing skeletons through a crosslinking mechanism during pyrolysis, resulting in the development of a compact char layer. This char layer acts as a protective barrier, enhancing the material’s resistance to heat and flames. In terms of mechanical properties, the multilayered polygonal flake-shaped 2D NKN plays a crucial role by impeding the formation of cracks that typically arise from vulnerable areas, such as adhesive phase particles. Simultaneously, the 1D HNT bridges these cracks within the matrix, ensuring the structural integrity of the composite material. In an optimal scenario, the homogeneously distributed 1D/2D hybrid kaolinite nanoclays exhibit remarkable results, with a 51.0% improvement in mode II fracture toughness (), indicating increased resistance to crack propagation. In addition, there is a 34.5% reduction in total heat release, signifying improved flame retardancy. This study represents a significant step forward in the field of composite materials. The innovative use of hybrid low-dimensional nanomaterials offers a promising avenue for the development of multifunctional composites. By carefully designing and incorporating these nanoclays, researchers can potentially create a new generation of FRP composites that excel in both flame resistance and mechanical strength.

中文翻译:


通过分布可控的一维/二维混合纳米粘土协同增韧策略实现卓越的机械性能和阻燃性 FRP



已提出将商业阻燃剂掺入纤维增强聚合物(FRP)复合材料中作为改善后者较差的阻燃性的潜在解决方案。然而,这种方法通常会带来挑战,因为它会对 FRP 的机械性能产生不利影响。因此,平衡提高阻燃性与保持机械完整性的需求仍然是 FRP 研究中的一个复杂问题。为了解决这一关键问题,本研究引入了一种新型添加剂系统,该系统由一维(1D)空心管状结构埃洛石纳米管(HNT)和二维(2D)多边形片状纳米高岭石(NKN)组合而成。通过采用一维/二维杂化高岭石纳米粘土体系,本研究旨在同时提高阻燃性和机械性能。这种创新方法具有多种优势。在燃烧和热解过程中,一维/二维混合高岭石纳米粘土系统被证明可以有效减少热量释放和挥发性​​浸出。此外,该系统在热解过程中通过交联机制促进增强骨架的形成,从而形成致密的炭层。该炭层充当保护屏障,增强材料的耐热性和耐火性。在机械性能方面,多层多边形片状 2D NKN 发挥着至关重要的作用,可以阻止通常由脆弱区域(例如粘合相颗粒)产生的裂纹的形成。同时,1D HNT 桥接了基体内的这些裂纹,确保了复合材料的结构完整性。在最佳情况下,均匀分布的 1D/2D 杂化高岭石纳米粘土表现出显着的结果,值为 51。II 型断裂韧性 () 提高 0%,表明裂纹扩展阻力增加。此外,总放热量减少了 34.5%,这意味着阻燃性得到改善。这项研究标志着复合材料领域向前迈出了重要一步。混合低维纳米材料的创新使用为多功能复合材料的开发提供了一条有前途的途径。通过仔细设计和整合这些纳米粘土,研究人员有可能创造出在阻燃性和机械强度方面均表现出色的新一代 FRP 复合材料。
更新日期:2024-05-17
down
wechat
bug