当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Materials Design and Mechanistic Understanding of Tellurium and Tellurium–Sulfur Cathodes for Rechargeable Batteries
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-13 , DOI: 10.1021/acs.accounts.4c00308 Yue Zhang 1, 2 , Jian Liu 1, 2
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-13 , DOI: 10.1021/acs.accounts.4c00308 Yue Zhang 1, 2 , Jian Liu 1, 2
Affiliation
The market demand for lithium-ion batteries (LIBs) has been proliferating in wide applications, from portable electronics and electric vehicles to renewable energy storage, due to their advantages of high energy density and reliable life cycles. Currently, further development of LIBs is hindered by the limited specific/volumetric capacity and high cost of conventional intercalation-type cathode materials. In this context, sulfur (S) has gained intensive attention as a conversion-type cathode because of its abundance, low cost, and high theoretical capacity (1675 mAh g–1). However, the insulating nature of S causes severe issues of sluggish redox kinetics, low S utilization, and unsatisfactory practical capacity. So far, extensive efforts have been devoted to boosting Li–S redox kinetics and enhancing cycling stability by inhibiting the shuttle effect, including developing functional electrolyte additives, introducing redox catalysts, and tailoring the S cathode structure. Partially substituting S atoms in S8 rings with high-electrical-conductivity elements (e.g., selenium, 1 × 10–3 S m–1) at the molecular level proves to be an effective strategy for tackling the above-mentioned challenges in Li–S batteries. It is noteworthy that tellurium (Te), with remarkable electrical conductivity (2 × 102 S m–1) and high density (6.24 g cm–3), is a promising battery electrode material that can realize fast electron transport and deliver volumetric capacity comparable to that of S or Se. Additionally, Te–S molecular regulation is one facile strategy to reshape Li–S chemistry, accelerate redox kinetics, and manipulate the lithiation/delithiation behaviors. Te is an effective eutectic accelerator that prevents polysulfide dissolution in Li–S batteries under the dissolution–deposition mechanism. Meanwhile, the Li–Te electrochemistry can contribute to reversible capacity in Li–TexSy batteries through Te–Li2Te conversion and enhance the materials utilization of TexSy.
中文翻译:
可充电电池用碲和碲硫阴极的材料设计和机理理解
由于锂离子电池(LIB)具有高能量密度和可靠的生命周期的优势,其市场需求在从便携式电子产品和电动汽车到可再生能源存储的广泛应用中不断激增。目前,传统插层型正极材料的比容量/体积容量有限和成本高阻碍了锂离子电池的进一步发展。在此背景下,硫(S)作为转化型正极因其丰富、低成本和高理论容量(1675 mAh g –1 )而受到广泛关注。然而,S的绝缘性质导致氧化还原动力学缓慢、S利用率低和实际容量不理想等严重问题。到目前为止,人们已经致力于通过抑制穿梭效应来提高Li-S氧化还原动力学和增强循环稳定性,包括开发功能性电解质添加剂、引入氧化还原催化剂和定制S阴极结构。在分子水平上用高电导率元素(例如硒,1 × 10 –3 S m –1 )部分取代S 8环中的S原子被证明是解决Li–中上述挑战的有效策略。 S 电池。值得注意的是,碲(Te)具有优异的导电性(2 × 10 2 S m –1 )和高密度(6.24 g cm –3 ),是一种有前途的电池电极材料,可以实现快速电子传输并提供体积容量与 S 或 Se 相当。此外,Te-S分子调控是重塑Li-S化学、加速氧化还原动力学和操纵锂化/脱锂行为的一种简便策略。 Te是一种有效的共晶促进剂,可在溶解-沉积机制下防止Li-S电池中多硫化物的溶解。同时,Li-Te电化学可以通过Te-Li 2 Te转化促进Li-T x S y电池的可逆容量,并提高T x S y的材料利用率。
更新日期:2024-08-13
中文翻译:
可充电电池用碲和碲硫阴极的材料设计和机理理解
由于锂离子电池(LIB)具有高能量密度和可靠的生命周期的优势,其市场需求在从便携式电子产品和电动汽车到可再生能源存储的广泛应用中不断激增。目前,传统插层型正极材料的比容量/体积容量有限和成本高阻碍了锂离子电池的进一步发展。在此背景下,硫(S)作为转化型正极因其丰富、低成本和高理论容量(1675 mAh g –1 )而受到广泛关注。然而,S的绝缘性质导致氧化还原动力学缓慢、S利用率低和实际容量不理想等严重问题。到目前为止,人们已经致力于通过抑制穿梭效应来提高Li-S氧化还原动力学和增强循环稳定性,包括开发功能性电解质添加剂、引入氧化还原催化剂和定制S阴极结构。在分子水平上用高电导率元素(例如硒,1 × 10 –3 S m –1 )部分取代S 8环中的S原子被证明是解决Li–中上述挑战的有效策略。 S 电池。值得注意的是,碲(Te)具有优异的导电性(2 × 10 2 S m –1 )和高密度(6.24 g cm –3 ),是一种有前途的电池电极材料,可以实现快速电子传输并提供体积容量与 S 或 Se 相当。此外,Te-S分子调控是重塑Li-S化学、加速氧化还原动力学和操纵锂化/脱锂行为的一种简便策略。 Te是一种有效的共晶促进剂,可在溶解-沉积机制下防止Li-S电池中多硫化物的溶解。同时,Li-Te电化学可以通过Te-Li 2 Te转化促进Li-T x S y电池的可逆容量,并提高T x S y的材料利用率。