当前位置:
X-MOL 学术
›
Phys. Lett. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dymnikova black hole from an infinite tower of higher-curvature corrections
Physics Letters B ( IF 4.3 ) Pub Date : 2024-08-08 , DOI: 10.1016/j.physletb.2024.138945 R.A. Konoplya , A. Zhidenko
Physics Letters B ( IF 4.3 ) Pub Date : 2024-08-08 , DOI: 10.1016/j.physletb.2024.138945 R.A. Konoplya , A. Zhidenko
Recently, in [1] , it was demonstrated that various regular black hole metrics can be derived within a theory featuring an infinite number of higher curvature corrections to General Relativity. Moreover, truncating this infinite series at the first few orders already yields a reliable approximation of the observable characteristics of such black holes [2] . Here, we further establish the existence of another regular black hole solution, particularly the D -dimensional extension of the Dymnikova black hole, within the equations of motion incorporating an infinite tower of higher-curvature corrections. This solution is essentially nonperturbative in the coupling parameter, rendering the action, if it exists, incapable of being approximated by a finite number of powers of the curvature. In addition, we compute the dominant quasinormal frequencies of such black holes using both the Bernstein polynomial method and the 13th order WKB method with Padé approximants, obtaining a high degree of agreement between them.
中文翻译:
来自无限高曲率校正塔的 Dymnikova 黑洞
最近,在 [1] 中,证明了各种常规黑洞度量可以在一个理论中推导出来,该理论具有对广义相对论的无限次高曲率校正。此外,在前几个阶数处截断这个无限级数已经产生了这种黑洞的可观测特性的可靠近似值 [2]。在这里,我们进一步确定了另一个规则黑洞解的存在,特别是 Dymnikova 黑洞的 D 维扩展,在包含更高曲率校正的无限塔的运动方程中。这个解在耦合参数中基本上是非扰动的,这使得作用(如果存在)无法用有限数量的曲率幂来近似。此外,我们使用 Bernstein 多项式方法和 13 阶 WKB 方法以及 Padé 近似计算此类黑洞的主要准正规频率,从而在它们之间获得高度一致。
更新日期:2024-08-08
中文翻译:
来自无限高曲率校正塔的 Dymnikova 黑洞
最近,在 [1] 中,证明了各种常规黑洞度量可以在一个理论中推导出来,该理论具有对广义相对论的无限次高曲率校正。此外,在前几个阶数处截断这个无限级数已经产生了这种黑洞的可观测特性的可靠近似值 [2]。在这里,我们进一步确定了另一个规则黑洞解的存在,特别是 Dymnikova 黑洞的 D 维扩展,在包含更高曲率校正的无限塔的运动方程中。这个解在耦合参数中基本上是非扰动的,这使得作用(如果存在)无法用有限数量的曲率幂来近似。此外,我们使用 Bernstein 多项式方法和 13 阶 WKB 方法以及 Padé 近似计算此类黑洞的主要准正规频率,从而在它们之间获得高度一致。