当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Benchmarking Reconstructive Spectrometer with Multiresonant Cavities
ACS Photonics ( IF 6.5 ) Pub Date : 2024-08-15 , DOI: 10.1021/acsphotonics.4c00915 Chunhui Yao 1 , Kangning Xu 2 , Tianhua Lin 2 , Jie Ma 2 , Chumeng Yao 1 , Peng Bao 1 , Zhitian Shi 1 , Richard Penty 1 , Qixiang Cheng 1, 2
ACS Photonics ( IF 6.5 ) Pub Date : 2024-08-15 , DOI: 10.1021/acsphotonics.4c00915 Chunhui Yao 1 , Kangning Xu 2 , Tianhua Lin 2 , Jie Ma 2 , Chumeng Yao 1 , Peng Bao 1 , Zhitian Shi 1 , Richard Penty 1 , Qixiang Cheng 1, 2
Affiliation
Recent years have seen the rapid development of miniaturized reconstructive spectrometers (RSs), yet they still confront a range of technical challenges, such as bandwidth/resolution ratio, sensing speed, and/or power efficiency. Reported RS designs often suffer from insufficient decorrelation between sampling channels, which, in essence, is due to inadequate engineering of sampling responses. This in turn results in poor spectral-pixel-to-channel ratios (SPCRs), typically restricted at single digits. So far, there lacks a general guideline for manipulating RS sampling responses for the effectiveness of spectral information acquisition. In this study, we shed light on a fundamental parameter from the compressive sensing (CS) theory─the average mutual correlation coefficient ν─and provide insight into how it serves as a critical benchmark in RS design. To this end, we propose a novel RS design with multiresonant cavities, consisting of a series of partial reflective interfaces. Such multicavity configuration allows the superlative optimization of sampling matrices to achieve minimized ν. Experimentally, we implement a single-shot, dual-band RS on a SiN platform, realizing an overall operation bandwidth of 270 nm and a <0.5 nm resolution with only 15 sampling channels per band. This leads to a record high SPCR of 18.0. Moreover, the proposed multicavity design can be readily adapted to various photonic platforms, ranging from optical fibers to free-space optics. For instance, we showcase that by employing multilayer coatings, an ultrabroadband RS can be optimized to exhibit a 700 nm bandwidth with an SPCR of over 100.
中文翻译:
具有多谐振腔的重构光谱仪基准测试
近年来,小型化重构光谱仪(RS)迅速发展,但它们仍然面临一系列技术挑战,例如带宽/分辨率、传感速度和/或功率效率。所报告的 RS 设计经常会遇到采样通道之间去相关不足的问题,这本质上是由于采样响应工程不充分造成的。这反过来又导致光谱像素与通道比 (SPCR) 较差,通常限制在个位数。到目前为止,还缺乏操纵RS采样响应以提高光谱信息采集有效性的通用指南。在这项研究中,我们阐明了压缩传感 (CS) 理论中的一个基本参数——平均互相关系数ν——并深入了解了它如何作为 RS 设计的关键基准。为此,我们提出了一种具有多谐振腔的新颖 RS 设计,由一系列部分反射界面组成。这种多腔配置允许对采样矩阵进行最优化,以实现最小化ν 。实验上,我们在 SiN 平台上实现了单次双频段 RS,实现了 270 nm 的整体工作带宽和 <0.5 nm 分辨率,每个频段仅 15 个采样通道。这导致 SPCR 达到 18.0 的历史新高。此外,所提出的多腔设计可以很容易地适应各种光子平台,从光纤到自由空间光学器件。例如,我们展示了通过采用多层涂层,可以优化超宽带 RS,使其呈现 700 nm 带宽,SPCR 超过 100。
更新日期:2024-08-15
中文翻译:
具有多谐振腔的重构光谱仪基准测试
近年来,小型化重构光谱仪(RS)迅速发展,但它们仍然面临一系列技术挑战,例如带宽/分辨率、传感速度和/或功率效率。所报告的 RS 设计经常会遇到采样通道之间去相关不足的问题,这本质上是由于采样响应工程不充分造成的。这反过来又导致光谱像素与通道比 (SPCR) 较差,通常限制在个位数。到目前为止,还缺乏操纵RS采样响应以提高光谱信息采集有效性的通用指南。在这项研究中,我们阐明了压缩传感 (CS) 理论中的一个基本参数——平均互相关系数ν——并深入了解了它如何作为 RS 设计的关键基准。为此,我们提出了一种具有多谐振腔的新颖 RS 设计,由一系列部分反射界面组成。这种多腔配置允许对采样矩阵进行最优化,以实现最小化ν 。实验上,我们在 SiN 平台上实现了单次双频段 RS,实现了 270 nm 的整体工作带宽和 <0.5 nm 分辨率,每个频段仅 15 个采样通道。这导致 SPCR 达到 18.0 的历史新高。此外,所提出的多腔设计可以很容易地适应各种光子平台,从光纤到自由空间光学器件。例如,我们展示了通过采用多层涂层,可以优化超宽带 RS,使其呈现 700 nm 带宽,SPCR 超过 100。