当前位置:
X-MOL 学术
›
Fract. Calc. Appl. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Averaging principle for stochastic Caputo fractional differential equations with non-Lipschitz condition
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-08-14 , DOI: 10.1007/s13540-024-00308-x Zhongkai Guo , Xiaoying Han , Junhao Hu
中文翻译:
非Lipschitz条件下随机Caputo分数阶微分方程的平均原理
更新日期:2024-08-15
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-08-14 , DOI: 10.1007/s13540-024-00308-x Zhongkai Guo , Xiaoying Han , Junhao Hu
In this paper, the averaging principle for stochastic Caputo fractional differential equations with the nonlinear terms satisfying the non-Lipschitz condition is considered. The work in the article is roughly divided into three parts. Firstly, we establish a generalized Gronwall inequality with singular integral kernel which is a key part in our analysis. Secondly, we discuss the existence and uniqueness of solution. And finally, the averaging principle is considered.
中文翻译:
非Lipschitz条件下随机Caputo分数阶微分方程的平均原理
本文考虑了非线性项满足非Lipschitz条件的随机Caputo分数阶微分方程的平均原理。文章中的工作大致分为三个部分。首先,我们建立了具有奇异积分核的广义Gronwall不等式,这是我们分析的关键部分。其次,讨论解的存在性和唯一性。最后,考虑平均原理。