当前位置:
X-MOL 学术
›
Emerg. Infect. Dis.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Participatory, Virologic, and Wastewater Surveillance Data to Assess Underestimation of COVID-19 Incidence, Germany, 2020–2024
Emerging Infectious Diseases ( IF 7.2 ) Pub Date : 2024-08-14 , DOI: 10.3201/eid3009.240640 Anna Loenenbach , Ann-Sophie Lehfeld , Peter Puetz , Barbara Biere , Susan Abunijela , Silke Buda , Michaela Diercke , Ralf Dürrwald , Timo Greiner , Walter Haas , Maria Helmrich , Kerstin Prahm , Jakob Schumacher , Marianne Wedde , Udo Buchholz
中文翻译:
用于评估 2020-2024 年德国 COVID-19 发病率低估的参与式病毒学和废水监测数据
更新日期:2024-08-15
Emerging Infectious Diseases ( IF 7.2 ) Pub Date : 2024-08-14 , DOI: 10.3201/eid3009.240640 Anna Loenenbach , Ann-Sophie Lehfeld , Peter Puetz , Barbara Biere , Susan Abunijela , Silke Buda , Michaela Diercke , Ralf Dürrwald , Timo Greiner , Walter Haas , Maria Helmrich , Kerstin Prahm , Jakob Schumacher , Marianne Wedde , Udo Buchholz
Using participatory, virologic, and wastewater surveillance systems, we estimated when and to what extent reported data of adult COVID-19 cases underestimated COVID-19 incidence in Germany. We also examined how case underestimation evolved over time. Our findings highlight how community-based surveillance systems can complement official notification systems for respiratory disease dynamics.
中文翻译:
用于评估 2020-2024 年德国 COVID-19 发病率低估的参与式病毒学和废水监测数据
利用参与式、病毒学和废水监测系统,我们估计了成人 COVID-19 病例报告数据何时以及在何种程度上低估了德国的 COVID-19 发病率。我们还研究了案例低估如何随着时间的推移而演变。我们的研究结果强调了基于社区的监测系统如何补充呼吸道疾病动态的官方通知系统。