当前位置: X-MOL 学术Emerg. Infect. Dis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Use of Open-Source Epidemic Intelligence for Infectious Disease Outbreaks, Ukraine, 2022
Emerging Infectious Diseases ( IF 7.2 ) Pub Date : 2024-08-14 , DOI: 10.3201/eid3009.240082
Anjali Kannan , Rosalie Chen , Zubair Akhtar , Braidy Sutton , Ashley Quigley , Margaret J. Morris , C. Raina MacIntyre

Formal infectious disease surveillance in Ukraine has been disrupted by Russia’s 2022 invasion, leading to challenges with tracking and containing epidemics. To analyze the effects of the war on infectious disease epidemiology, we used open-source data from EPIWATCH, an artificial intelligence early-warning system. We analyzed patterns of infectious diseases and syndromes before (November 1, 2021–February 23, 2022) and during (February 24–July 31, 2022) the conflict. We compared case numbers for the most frequently reported diseases with numbers from formal sources and found increases in overall infectious disease reports and in case numbers of cholera, botulism, tuberculosis, HIV/AIDS, rabies, and salmonellosis during compared with before the invasion. During the conflict, although open-source intelligence captured case numbers for epidemics, such data (except for diphtheria) were unavailable/underestimated by formal surveillance. In the absence of formal surveillance during military conflicts, open-source data provide epidemic intelligence useful for infectious disease control.



中文翻译:


使用开源流行病情报来应对传染病爆发,乌克兰,2022 年



乌克兰的正式传染病监测因俄罗斯 2022 年入侵而中断,导致追踪和遏制流行病面临挑战。为了分析战争对传染病流行病学的影响,我们使用了人工智能预警系统 EPIWATCH 的开源数据。我们分析了冲突前(2021年11月1日至2022年2月23日)和冲突期间(2022年2月24日至7月31日)的传染病和综合症模式。我们将最常报告的疾病的病例数与正式来源的数字进行比较,发现与入侵前相比,总体传染病报告以及霍乱、肉毒杆菌中毒、结核病、艾滋病毒/艾滋病、狂犬病和沙门氏菌病的病例数有所增加。在冲突期间,尽管开源情报捕获了流行病的病例数,但这些数据(白喉除外)无法获得/被正式监测低估。在军事冲突期间缺乏正式监测的情况下,开源数据提供了对传染病控制有用的流行病情报。

更新日期:2024-08-15
down
wechat
bug