当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosted thermogalvanic thermopower upon solid-to-liquid phase transition
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-15 , DOI: 10.1039/d4ee01642d Dongjoon Shin 1 , Kihoon Ryu 2 , Daehyun Kim 1 , Eunho Choi 2 , Seunghoon Chae 1 , Yundong Lee 2 , Yong Tae Kang 1 , Sangtae Kim 2, 3 , Wonjoon Choi 1
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-15 , DOI: 10.1039/d4ee01642d Dongjoon Shin 1 , Kihoon Ryu 2 , Daehyun Kim 1 , Eunho Choi 2 , Seunghoon Chae 1 , Yundong Lee 2 , Yong Tae Kang 1 , Sangtae Kim 2, 3 , Wonjoon Choi 1
Affiliation
Thermogalvanic cells offer scalable low-grade waste heat recovery using tunable electrode-dependent thermopower and electrolyte-dependent thermal conductivities. However, the use of single-phase electrodes thermodynamically curbs the entropy difference, limiting the thermopower enhancement. Here, we show that phase transforming electrodes achieve significantly enhanced thermopower using the melting phase transition of bulk NaxK alloys. Under both temporal and spatial temperature gradients, the electrodes exhibit significantly increased thermopower up to 26.1 mV K−1 across the melting point and the generated voltages of 261 mV under 10 K temperature gradient. We also show that stabilizing the liquid metal electrode–electrolyte interface plays a critical role in evaluating the thermopower associated with the phase transition. The strategies demonstrated in this work suggest potential design guidelines towards optimizing thermogalvanic cells to specific temperature ranges.
中文翻译:
固相到液相变时增强热电偶热电势
热原电池使用可调的电极相关热电势和电解质相关热导率提供可扩展的低品位废热回收。然而,单相电极的使用在热力学上抑制了熵差,限制了热电势的增强。在这里,我们表明,相变电极利用块体 Na x K 合金的熔化相变实现了显着增强的热电势。在时间和空间温度梯度下,电极在熔点上表现出显着增加的热电势高达26.1 mV K -1 ,并且在10 K温度梯度下产生261 mV的电压。我们还表明,稳定液态金属电极-电解质界面在评估与相变相关的热电势方面起着关键作用。这项工作中展示的策略提出了将热原电池优化到特定温度范围的潜在设计指南。
更新日期:2024-08-15
中文翻译:
固相到液相变时增强热电偶热电势
热原电池使用可调的电极相关热电势和电解质相关热导率提供可扩展的低品位废热回收。然而,单相电极的使用在热力学上抑制了熵差,限制了热电势的增强。在这里,我们表明,相变电极利用块体 Na x K 合金的熔化相变实现了显着增强的热电势。在时间和空间温度梯度下,电极在熔点上表现出显着增加的热电势高达26.1 mV K -1 ,并且在10 K温度梯度下产生261 mV的电压。我们还表明,稳定液态金属电极-电解质界面在评估与相变相关的热电势方面起着关键作用。这项工作中展示的策略提出了将热原电池优化到特定温度范围的潜在设计指南。