当前位置:
X-MOL 学术
›
Sci. Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High energy density picoliter-scale zinc-air microbatteries for colloidal robotics
Science Robotics ( IF 26.1 ) Pub Date : 2024-08-14 , DOI: 10.1126/scirobotics.ade4642 Ge Zhang 1 , Sungyun Yang 1 , Jing Fan Yang 1 , David Gonzalez-Medrano 2 , Marc Z Miskin 2 , Volodymyr B Koman 1 , Yuwen Zeng 1 , Sylvia Xin Li 1 , Matthias Kuehne 1 , Albert Tianxiang Liu 3 , Allan M Brooks 1 , Mahesh Kumar 1, 4 , Michael S Strano 1
Science Robotics ( IF 26.1 ) Pub Date : 2024-08-14 , DOI: 10.1126/scirobotics.ade4642 Ge Zhang 1 , Sungyun Yang 1 , Jing Fan Yang 1 , David Gonzalez-Medrano 2 , Marc Z Miskin 2 , Volodymyr B Koman 1 , Yuwen Zeng 1 , Sylvia Xin Li 1 , Matthias Kuehne 1 , Albert Tianxiang Liu 3 , Allan M Brooks 1 , Mahesh Kumar 1, 4 , Michael S Strano 1
Affiliation
The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines, and smart dust, has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with microfabrication techniques, creating substantial challenges to realizing microscale energy systems. Here, we photolithographically patterned a microscale zinc/platinum/SU-8 system to generate the highest energy density microbattery at the picoliter (10 −12 liter) scale. The device scavenges ambient or solution-dissolved oxygen for a zinc oxidation reaction, achieving an energy density ranging from 760 to 1070 watt-hours per liter at scales below 100 micrometers lateral and 2 micrometers thickness in size. The parallel nature of photolithography processes allows 10,000 devices per wafer to be released into solution as colloids with energy stored on board. Within a volume of only 2 picoliters each, these primary microbatteries can deliver open circuit voltages of 1.05 ± 0.12 volts, with total energies ranging from 5.5 ± 0.3 to 7.7 ± 1.0 microjoules and a maximum power near 2.7 nanowatts. We demonstrated that such systems can reliably power a micrometer-sized memristor circuit, providing access to nonvolatile memory. We also cycled power to drive the reversible bending of microscale bimorph actuators at 0.05 hertz for mechanical functions of colloidal robots. Additional capabilities, such as powering two distinct nanosensor types and a clock circuit, were also demonstrated. The high energy density, low volume, and simple configuration promise the mass fabrication and adoption of such picoliter zinc-air batteries for micrometer-scale, colloidal robotics with autonomous functions.
中文翻译:
用于胶体机器人的高能量密度皮升级锌空气微电池
最近人们对微观自主系统(包括微型机器人、胶体状态机和智能灰尘)的兴趣,产生了对微型能量存储和收集的需求。然而,用于储能的宏观材料与微加工技术不兼容,这给实现微尺度能源系统带来了巨大的挑战。在这里,我们通过光刻技术对微型锌/铂/SU-8系统进行图案化,以产生皮升(10 -12 升)规模的最高能量密度微电池。该装置清除环境或溶液中溶解的氧气以进行锌氧化反应,在横向尺寸低于 100 微米、厚度尺寸低于 2 微米的情况下,实现每升 760 至 1070 瓦时的能量密度。光刻工艺的并行性质允许每个晶圆上 10,000 个器件以胶体形式释放到溶液中,并在板上存储能量。这些初级微电池的体积仅为 2 皮升,可提供 1.05 ± 0.12 伏的开路电压,总能量范围为 5.5 ± 0.3 至 7.7 ± 1.0 微焦,最大功率接近 2.7 纳瓦。我们证明了此类系统可以可靠地为微米大小的忆阻器电路供电,从而提供对非易失性存储器的访问。我们还循环供电以 0.05 赫兹驱动微型双压电晶片执行器的可逆弯曲,以实现胶体机器人的机械功能。还展示了其他功能,例如为两种不同的纳米传感器类型和时钟电路供电。高能量密度、小体积和简单的配置有望大规模制造和采用这种皮升锌空气电池,用于具有自主功能的微米级胶体机器人。
更新日期:2024-08-14
中文翻译:
用于胶体机器人的高能量密度皮升级锌空气微电池
最近人们对微观自主系统(包括微型机器人、胶体状态机和智能灰尘)的兴趣,产生了对微型能量存储和收集的需求。然而,用于储能的宏观材料与微加工技术不兼容,这给实现微尺度能源系统带来了巨大的挑战。在这里,我们通过光刻技术对微型锌/铂/SU-8系统进行图案化,以产生皮升(10 -12 升)规模的最高能量密度微电池。该装置清除环境或溶液中溶解的氧气以进行锌氧化反应,在横向尺寸低于 100 微米、厚度尺寸低于 2 微米的情况下,实现每升 760 至 1070 瓦时的能量密度。光刻工艺的并行性质允许每个晶圆上 10,000 个器件以胶体形式释放到溶液中,并在板上存储能量。这些初级微电池的体积仅为 2 皮升,可提供 1.05 ± 0.12 伏的开路电压,总能量范围为 5.5 ± 0.3 至 7.7 ± 1.0 微焦,最大功率接近 2.7 纳瓦。我们证明了此类系统可以可靠地为微米大小的忆阻器电路供电,从而提供对非易失性存储器的访问。我们还循环供电以 0.05 赫兹驱动微型双压电晶片执行器的可逆弯曲,以实现胶体机器人的机械功能。还展示了其他功能,例如为两种不同的纳米传感器类型和时钟电路供电。高能量密度、小体积和简单的配置有望大规模制造和采用这种皮升锌空气电池,用于具有自主功能的微米级胶体机器人。