当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the streamflow prediction accuracy in sparse data regions: a fresh perspective on integrated hydrological-hydrodynamic and hybrid machine learning models
Engineering Applications of Computational Fluid Mechanics ( IF 5.9 ) Pub Date : 2024-08-13 , DOI: 10.1080/19942060.2024.2387051
Saeed Khorram 1 , Nima Jehbez 1
Affiliation  

Considering the differences and complex nonlinear relationships of the observational data, this research integrated the hydrological, hydrodynamic and time series models, including the SWAT+, MIKE2...

中文翻译:


提高稀疏数据区域的水流预测精度:集成水文-水动力和混合机器学习模型的新视角



考虑到观测数据的差异性和复杂的非线性关系,本研究集成了水文、水动力和时间序列模型,包括SWAT+、MIKE2……
更新日期:2024-08-13
down
wechat
bug