Nature Electronics ( IF 33.7 ) Pub Date : 2024-08-12 , DOI: 10.1038/s41928-024-01229-6 Yongbo Jiang , Chunsen Liu , Zhenyuan Cao , Chuhang Li , Zizheng Liu , Chong Wang , Yutong Xiang , Peng Zhou
Data-driven computing is highly dependent on memory performance. Flash memory is presently the dominant non-volatile memory technology but suffers from limitations in terms of speed. Two-dimensional (2D) materials could potentially be used to create ultrafast flash memory. However, due to interface engineering problems, ultrafast non-volatile performance is presently restricted to exfoliated 2D materials, and there is a lack of performance demonstrations with short-channel devices. Here, we report a scalable integration process for ultrafast 2D flash memory that can be used to integrate 1,024 flash-memory devices with a yield of over 98%. We illustrate the approach with two different tunnelling barrier configurations of the memory stack (HfO2/Pt/HfO2 and Al2O3/Pt/Al2O3) and using transferred chemical vapour deposition-grown monolayer molybdenum disulfide. We also show that the channel length of the ultrafast flash memory can be scaled down to sub-10 nm, which is below the physical limit of silicon flash memory. Our sub-10 nm devices offer non-volatile information storage (up to 4 bits) and robust endurance (over 105).
中文翻译:
超快二维闪存的可扩展集成工艺
数据驱动的计算高度依赖于内存性能。闪存是目前占主导地位的非易失性存储技术,但在速度方面受到限制。二维 (2D) 材料有可能用于制造超快闪存。然而,由于界面工程问题,超快非易失性性能目前仅限于剥离型二维材料,并且缺乏短沟道器件的性能演示。在此,我们报告了一种超快 2D 闪存的可扩展集成工艺,可用于集成 1,024 个闪存器件,良率超过 98%。我们使用存储堆栈的两种不同隧道势垒配置(HfO 2 /Pt/HfO 2和 Al 2 O 3 /Pt/Al 2 O 3 )并使用转移化学气相沉积生长的单层二硫化钼来说明该方法。我们还表明,超快闪存的通道长度可以缩小到 10 nm 以下,低于硅闪存的物理极限。我们的 10 nm 以下器件提供非易失性信息存储(高达 4 位)和强大的耐用性(超过 10 5 )。