npj Quantum Information ( IF 6.6 ) Pub Date : 2024-08-12 , DOI: 10.1038/s41534-024-00870-5 Baijun Li , Yunlan Zuo , Le-Man Kuang , Hui Jing , Chaohong Lee
Attribute to their robustness against loss and external noise, nonreciprocal photonic devices hold great promise for applications in quantum information processing. Recent advancements have demonstrated that nonreciprocal optical transmission in linear systems can be achieved through the strategic introduction of loss. However, a crucial question remains unanswered: can loss be harnessed as a resource for generating nonreciprocal quantum correlations? Here, we take a counterintuitive stance by engineering loss to generate a vital form of nonreciprocal quantum correlations, termed nonreciprocal photon blockade. We examine a dissipative three-cavity system comprising two nonlinear cavities and a linear cavity. The interplay of loss and nonlinearity leads to a robust nonreciprocal single- and two-photon blockade, facilitated by destructive quantum interference. Furthermore, we demonstrate the tunability of this nonreciprocal photon blockade by manipulating the relative phase between the two nonlinear cavities. Remarkably, this allows for the reversal of the direction of nonreciprocity. Our study not only sheds a light on the concept of loss-engineered quantum nonreciprocity but also opens up a pathway for the design of quantum nonreciprocal photonic devices.
中文翻译:
损耗引起的量子非互易性
由于其对损耗和外部噪声的鲁棒性,不可逆光子器件在量子信息处理中的应用具有广阔的前景。最近的进展表明,线性系统中的不可逆光传输可以通过策略性引入损耗来实现。然而,一个关键问题仍未得到解答:能否利用损失作为产生不可逆量子相关性的资源?在这里,我们采取了违反直觉的立场,通过工程损失来产生一种重要形式的不可逆量子相关性,称为不可逆光子封锁。我们研究了一个由两个非线性腔和一个线性腔组成的耗散三腔系统。损耗和非线性的相互作用导致了强大的不可逆单光子和双光子封锁,而破坏性量子干涉则促进了这种封锁。此外,我们通过操纵两个非线性腔之间的相对相位来证明这种不可逆光子封锁的可调谐性。值得注意的是,这允许逆转非互易性的方向。我们的研究不仅揭示了损耗工程量子非互易性的概念,而且还为量子非互易性光子器件的设计开辟了一条途径。