当前位置:
X-MOL 学术
›
Des. Codes Cryptogr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Involutions of finite abelian groups with explicit constructions on finite fields
Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-08-12 , DOI: 10.1007/s10623-024-01474-y Ruikai Chen , Sihem Mesnager
中文翻译:
有限域上显式构造的有限阿贝尔群的对合
更新日期:2024-08-13
Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-08-12 , DOI: 10.1007/s10623-024-01474-y Ruikai Chen , Sihem Mesnager
In this paper, we study properties and constructions of a general family of involutions of finite abelian groups, especially those of finite fields. The involutions we are interested in have the form \(\lambda +g\circ \tau \), where \(\lambda \) and \(\tau \) are endomorphisms of a finite abelian group and g is an arbitrary map on this group. We present some involutions explicitly written as polynomials for the special cases of multiplicative and additive groups of finite fields.
中文翻译:
有限域上显式构造的有限阿贝尔群的对合
在本文中,我们研究有限交换群(特别是有限域)的一般对合族的性质和构造。我们感兴趣的对合具有\(\lambda +g\circ \tau \) 的形式,其中\(\lambda \)和\(\tau \)是有限阿贝尔群的自同态, g是上的任意映射这个组。对于有限域乘法和加法群的特殊情况,我们提出了一些明确写为多项式的对合。