当前位置:
X-MOL 学术
›
Quantum Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A square-root speedup for finding the smallest eigenvalue
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-12 , DOI: 10.1088/2058-9565/ad6a36 Alex Kerzner , Vlad Gheorghiu , Michele Mosca , Thomas Guilbaud , Federico Carminati , Fabio Fracas , Luca Dellantonio
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-12 , DOI: 10.1088/2058-9565/ad6a36 Alex Kerzner , Vlad Gheorghiu , Michele Mosca , Thomas Guilbaud , Federico Carminati , Fabio Fracas , Luca Dellantonio
We describe a quantum algorithm for finding the smallest eigenvalue of a Hermitian matrix. This algorithm combines quantum phase estimation and quantum amplitude estimation to achieve a quadratic speedup with respect to the best classical algorithm in terms of matrix dimensionality, i.e.
O ~ ( N / ε )
9
In this work
O ~
ignores terms that are polylogarithmic in N or
1 / ε
. black-box queries to an oracle encoding the matrix, where N is the matrix dimension and ɛ is the desired precision. In contrast, the best classical algorithm for the same task requires
Ω ( N ) polylog ( 1 / ε )
queries. In addition, this algorithm allows the user to select any constant success probability. We also provide a similar algorithm with the same runtime that allows us to prepare a quantum state lying mostly in the matrix’s low-energy subspace. We implement simulations of both algorithms and demonstrate their application to problems in quantum chemistry and materials science.
中文翻译:
寻找最小特征值的平方根加速
我们描述了一种用于查找埃尔米特矩阵的最小特征值的量子算法。该算法结合了量子相位估计和量子幅度估计,在矩阵维数方面相对于最佳经典算法实现了二次方的加速,即氧~ (氮/ ε ) 9
在这项工作中氧~忽略多对数项氮或者1 / ε 。
对编码矩阵的预言机进行黑盒查询,其中氮是矩阵维数并且ε是所需的精度。相比之下,针对同一任务的最佳经典算法需要Ω (氮)多对数( 1 / ε )查询。此外,该算法允许用户选择任何恒定的成功概率。我们还提供了具有相同运行时间的类似算法,使我们能够准备主要位于矩阵低能子空间中的量子态。我们对这两种算法进行了模拟,并展示了它们在量子化学和材料科学问题中的应用。
更新日期:2024-08-12
中文翻译:
寻找最小特征值的平方根加速
我们描述了一种用于查找埃尔米特矩阵的最小特征值的量子算法。该算法结合了量子相位估计和量子幅度估计,在矩阵维数方面相对于最佳经典算法实现了二次方的加速,即氧~ (氮/ ε ) 9
在这项工作中氧~忽略多对数项氮或者1 / ε 。
对编码矩阵的预言机进行黑盒查询,其中氮是矩阵维数并且ε是所需的精度。相比之下,针对同一任务的最佳经典算法需要Ω (氮)多对数( 1 / ε )查询。此外,该算法允许用户选择任何恒定的成功概率。我们还提供了具有相同运行时间的类似算法,使我们能够准备主要位于矩阵低能子空间中的量子态。我们对这两种算法进行了模拟,并展示了它们在量子化学和材料科学问题中的应用。