当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioelectronics for electrical stimulation: materials, devices and biomedical applications
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-08-12 , DOI: 10.1039/d4cs00413b
Ya Huang 1 , Kuanming Yao 1 , Qiang Zhang 1 , Xingcan Huang 1 , Zhenlin Chen 1 , Yu Zhou 2 , Xinge Yu 1
Affiliation  

Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.

中文翻译:


用于电刺激的生物电子学:材料、设备和生物医学应用



生物电子学是一个热门研究课题,也是一个重要工具,因为它有助于创建与生物系统相互作用的先进医疗设备,以有效诊断、监测和治疗广泛的健康状况。电刺激 (ES) 是生物电子学领域的一项关键技术,提供精确的非药物手段来调节和控制分子、细胞、组织和器官水平的生物过程。该方法具有通过集成复杂的电信号、设备接口和针对特定生物机制定制的设计来恢复或增强因疾病或损伤而受损的生理功能的潜力。本综述解释了 ES 影响细胞行为的机制,介绍了基本的刺激原理,讨论了最佳 ES 系统的性能要求,并重点介绍了代表性应用。从这篇综述中,我们可以认识到基于ES的生物电子学在治疗、再生医学和康复工程技术中的潜力,从组织工程到神经技术,以及心血管和认知功能的调节。这篇综述强调了 ES 在各种生物医学背景下的多功能性,并强调需要适应它所解决的复杂的生物和临床环境。
更新日期:2024-08-12
down
wechat
bug