当前位置:
X-MOL 学术
›
Crit. Care
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Redefining urine output thresholds for acute kidney injury criteria in critically Ill patients: a derivation and validation study
Critical Care ( IF 8.8 ) Pub Date : 2024-08-12 , DOI: 10.1186/s13054-024-05054-3 Guido Dias Machado 1 , Leticia Libório Santos 2 , Alexandre Braga Libório 1
Critical Care ( IF 8.8 ) Pub Date : 2024-08-12 , DOI: 10.1186/s13054-024-05054-3 Guido Dias Machado 1 , Leticia Libório Santos 2 , Alexandre Braga Libório 1
Affiliation
The current definition of acute kidney injury (AKI) includes increased serum creatinine (sCr) concentration and decreased urinary output (UO). Recent studies suggest that the standard UO threshold of 0.5 ml/kg/h may be suboptimal. This study aimed to develop and validate a novel UO-based AKI classification system that improves mortality prediction and patient stratification. Data were obtained from the MIMIC-IV and eICU databases. The development process included (1) evaluating UO as a continuous variable over 3-, 6-, 12-, and 24-h periods; (2) identifying 3 optimal UO cutoff points for each time window (stages 1, 2, and 3); (3) comparing sensitivity and specificity to develop a unified staging system; (4) assessing average versus persistent reduced UO hourly; (5) comparing the new UO-AKI system to the KDIGO UO-AKI system; (6) integrating sCr criteria with both systems and comparing them; and (7) validating the new classification with an independent cohort. In all these steps, the outcome was hospital mortality. Another analyzed outcome was 90-day mortality. The analyses included ROC curve analysis, net reclassification improvement (NRI), integrated discrimination improvement (IDI), and logistic and Cox regression analyses. From the MIMIC-IV database, 35,845 patients were included in the development cohort. After comparing the sensitivity and specificity of 12 different lowest UO thresholds across four time frames, 3 cutoff points were selected to compose the proposed UO-AKI classification: stage 1 (0.2–0.3 mL/kg/h), stage 2 (0.1–0.2 mL/kg/h), and stage 3 (< 0.1 mL/kg/h) over 6 h. The proposed classification had better discrimination when the average was used than when the persistent method was used. The adjusted odds ratio demonstrated a significant stepwise increase in hospital mortality with advancing UO-AKI stage. The proposed classification combined or not with the sCr criterion outperformed the KDIGO criteria in terms of predictive accuracy—AUC-ROC 0.75 (0.74–0.76) vs. 0.69 (0.68–0.70); NRI: 25.4% (95% CI: 23.3–27.6); and IDI: 4.0% (95% CI: 3.6–4.5). External validation with the eICU database confirmed the superior performance of the new classification system. The proposed UO-AKI classification enhances mortality prediction and patient stratification in critically ill patients, offering a more accurate and practical approach than the current KDIGO criteria.
中文翻译:
重新定义危重患者急性肾损伤标准的尿量阈值:推导和验证研究
目前急性肾损伤(AKI)的定义包括血清肌酐(sCr)浓度升高和尿量(UO)减少。最近的研究表明,0.5 ml/kg/h 的标准 UO 阈值可能不是最理想的。本研究旨在开发和验证一种基于 UO 的新型 AKI 分类系统,该系统可改善死亡率预测和患者分层。数据来自 MIMIC-IV 和 eICU 数据库。开发过程包括 (1) 将 UO 作为 3、6、12 和 24 小时周期内的连续变量进行评估; (2) 确定每个时间窗口的 3 个最佳 UO 截止点(阶段 1、2 和 3); (3)比较敏感性和特异性,制定统一的分期系统; (4) 评估平均每小时 UO 与持续减少的 UO; (5)将新的UO-AKI系统与KDIGO UO-AKI系统进行比较; (6) 将 sCr 标准与两个系统相结合并进行比较; (7) 通过独立队列验证新分类。所有这些步骤的结果都是医院死亡率。另一个分析结果是 90 天死亡率。分析包括 ROC 曲线分析、净重分类改进 (NRI)、综合辨别改进 (IDI) 以及逻辑回归和 Cox 回归分析。 MIMIC-IV 数据库中,开发队列中纳入了 35,845 名患者。在比较了四个时间范围内 12 个不同的最低 UO 阈值的敏感性和特异性后,选择了 3 个截止点来组成拟议的 UO-AKI 分类:第 1 阶段(0.2–0.3 mL/kg/h)、第 2 阶段(0.1–0.2 mL/kg/h),以及 6 小时内的第 3 阶段 (< 0.1 mL/kg/h)。使用平均值时所提出的分类比使用持久方法时具有更好的区分度。 调整后的比值比表明,随着 UO-AKI 分期的进展,医院死亡率显着逐步增加。所提出的分类无论是否与 sCr 标准结合使用,在预测准确性方面均优于 KDIGO 标准 — AUC-ROC 0.75 (0.74–0.76) vs. 0.69 (0.68–0.70); NRI:25.4%(95% CI:23.3–27.6); IDI:4.0%(95% CI:3.6–4.5)。 eICU 数据库的外部验证证实了新分类系统的卓越性能。拟议的 UO-AKI 分类增强了危重患者的死亡率预测和患者分层,提供了比当前 KDIGO 标准更准确、更实用的方法。
更新日期:2024-08-12
中文翻译:
重新定义危重患者急性肾损伤标准的尿量阈值:推导和验证研究
目前急性肾损伤(AKI)的定义包括血清肌酐(sCr)浓度升高和尿量(UO)减少。最近的研究表明,0.5 ml/kg/h 的标准 UO 阈值可能不是最理想的。本研究旨在开发和验证一种基于 UO 的新型 AKI 分类系统,该系统可改善死亡率预测和患者分层。数据来自 MIMIC-IV 和 eICU 数据库。开发过程包括 (1) 将 UO 作为 3、6、12 和 24 小时周期内的连续变量进行评估; (2) 确定每个时间窗口的 3 个最佳 UO 截止点(阶段 1、2 和 3); (3)比较敏感性和特异性,制定统一的分期系统; (4) 评估平均每小时 UO 与持续减少的 UO; (5)将新的UO-AKI系统与KDIGO UO-AKI系统进行比较; (6) 将 sCr 标准与两个系统相结合并进行比较; (7) 通过独立队列验证新分类。所有这些步骤的结果都是医院死亡率。另一个分析结果是 90 天死亡率。分析包括 ROC 曲线分析、净重分类改进 (NRI)、综合辨别改进 (IDI) 以及逻辑回归和 Cox 回归分析。 MIMIC-IV 数据库中,开发队列中纳入了 35,845 名患者。在比较了四个时间范围内 12 个不同的最低 UO 阈值的敏感性和特异性后,选择了 3 个截止点来组成拟议的 UO-AKI 分类:第 1 阶段(0.2–0.3 mL/kg/h)、第 2 阶段(0.1–0.2 mL/kg/h),以及 6 小时内的第 3 阶段 (< 0.1 mL/kg/h)。使用平均值时所提出的分类比使用持久方法时具有更好的区分度。 调整后的比值比表明,随着 UO-AKI 分期的进展,医院死亡率显着逐步增加。所提出的分类无论是否与 sCr 标准结合使用,在预测准确性方面均优于 KDIGO 标准 — AUC-ROC 0.75 (0.74–0.76) vs. 0.69 (0.68–0.70); NRI:25.4%(95% CI:23.3–27.6); IDI:4.0%(95% CI:3.6–4.5)。 eICU 数据库的外部验证证实了新分类系统的卓越性能。拟议的 UO-AKI 分类增强了危重患者的死亡率预测和患者分层,提供了比当前 KDIGO 标准更准确、更实用的方法。