当前位置:
X-MOL 学术
›
GISci. Remote Sens.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solution for crop classification in regions with limited labeled samples: deep learning and transfer learning
GIScience & Remote Sensing ( IF 6.0 ) Pub Date : 2024-08-05 , DOI: 10.1080/15481603.2024.2387393 Hengbin Wang 1 , Yu Yao 1 , Zijing Ye 1 , Wanqiu Chang 1 , Junyi Liu 1 , Yuanyuan Zhao 1, 2 , Shaoming Li 1, 2 , Zhe Liu 1, 2 , Xiaodong Zhang 1, 2
GIScience & Remote Sensing ( IF 6.0 ) Pub Date : 2024-08-05 , DOI: 10.1080/15481603.2024.2387393 Hengbin Wang 1 , Yu Yao 1 , Zijing Ye 1 , Wanqiu Chang 1 , Junyi Liu 1 , Yuanyuan Zhao 1, 2 , Shaoming Li 1, 2 , Zhe Liu 1, 2 , Xiaodong Zhang 1, 2
Affiliation
Reliable classification results are crucial for guiding agricultural production, forecasting crop yield, and ensuring food security. Generating reliable classification results is relatively simple ...
中文翻译:
标记样本有限区域作物分类解决方案:深度学习和迁移学习
可靠的分类结果对于指导农业生产、预测作物产量、保障粮食安全至关重要。生成可靠的分类结果相对简单......
更新日期:2024-08-05
中文翻译:
标记样本有限区域作物分类解决方案:深度学习和迁移学习
可靠的分类结果对于指导农业生产、预测作物产量、保障粮食安全至关重要。生成可靠的分类结果相对简单......