当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quasi-brittle ice breaking mechanisms by high-velocity water jet impacts: An investigation based on PD-SPH coupling model and experiments
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-07-15 , DOI: 10.1016/j.jmps.2024.105783 Hao-Tian Shi , Guang-Yu Yuan , Bao-Yu Ni , Lu-Wen Zhang
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-07-15 , DOI: 10.1016/j.jmps.2024.105783 Hao-Tian Shi , Guang-Yu Yuan , Bao-Yu Ni , Lu-Wen Zhang
Ice, a quasi-brittle material with a complex crystal organization and found ubiquitously in nature, undergoes an impact fragmentation process that implies a rich physical mechanism, yet remains not thoroughly elucidated. We develop a highly robust and efficient meshless method for fluid–solid coupling, specifically designed to elucidate the mechanisms of crack propagation in S2 columnar ice subjected to high-speed water jet impacts. This method couples a low-dissipation Riemann smooth particle hydrodynamics approach with a non-ordinary state-based peridynamics model, enabling detailed exploration of fracture process. Our theoretical advancements enhance numerical stability at the fluid–solid interface and establish a precise ice constitutive model by capturing the unique hydrostatic pressure-dependent and rate-dependent plasticity within the peridynamics framework, effectively addressing challenges in both fluid and solid phases. Combined with high-velocity water jet impact experiments, this study successfully delineates the initiation and expansion of circumferential and radial cracks in ice plates. We demonstrate that these cracks, both circumferential and radial, originate from tensile failure induced by circular elastic–plastic stress waves initiated by point source shocks. Specifically, circumferential cracks emerge and propagate from the upper to the lower surface driven by radial tensile stress, while radial cracks, motivated by circumferential tensile stress, develop from the lower to the upper surface. This investigation not only provides a foundational understanding of ice impact fracturing but also establishes a versatile theoretical framework applicable to a wide range of quasi-brittle materials.
中文翻译:
高速水射流冲击准脆性破冰机制:基于PD-SPH耦合模型和实验的研究
冰是一种具有复杂晶体组织的准脆性材料,在自然界中随处可见,它经历的撞击破碎过程意味着丰富的物理机制,但仍未得到彻底阐明。我们开发了一种高度稳健且高效的流固耦合无网格方法,专门用于阐明 S2 柱状冰在高速水射流冲击下裂纹扩展的机制。该方法将低耗散黎曼光滑粒子流体动力学方法与基于非普通状态的近场动力学模型相结合,从而能够对断裂过程进行详细探索。我们的理论进步增强了流固界面的数值稳定性,并通过捕获近场动力学框架内独特的静水压力依赖性和速率依赖性塑性建立了精确的冰本构模型,有效解决了流体和固相的挑战。结合高速水射流冲击实验,该研究成功描绘了冰板中周向和径向裂纹的萌生和扩展。我们证明,这些周向和径向裂纹源自由点源冲击引发的圆形弹塑性应力波引起的拉伸破坏。具体而言,周向裂纹在径向拉应力的驱动下从上表面向下表面出现并扩展,而径向裂纹在周向拉应力的驱动下从下表面向上表面发展。这项研究不仅提供了对冰冲击破裂的基础了解,而且建立了适用于各种准脆性材料的通用理论框架。
更新日期:2024-07-15
中文翻译:
高速水射流冲击准脆性破冰机制:基于PD-SPH耦合模型和实验的研究
冰是一种具有复杂晶体组织的准脆性材料,在自然界中随处可见,它经历的撞击破碎过程意味着丰富的物理机制,但仍未得到彻底阐明。我们开发了一种高度稳健且高效的流固耦合无网格方法,专门用于阐明 S2 柱状冰在高速水射流冲击下裂纹扩展的机制。该方法将低耗散黎曼光滑粒子流体动力学方法与基于非普通状态的近场动力学模型相结合,从而能够对断裂过程进行详细探索。我们的理论进步增强了流固界面的数值稳定性,并通过捕获近场动力学框架内独特的静水压力依赖性和速率依赖性塑性建立了精确的冰本构模型,有效解决了流体和固相的挑战。结合高速水射流冲击实验,该研究成功描绘了冰板中周向和径向裂纹的萌生和扩展。我们证明,这些周向和径向裂纹源自由点源冲击引发的圆形弹塑性应力波引起的拉伸破坏。具体而言,周向裂纹在径向拉应力的驱动下从上表面向下表面出现并扩展,而径向裂纹在周向拉应力的驱动下从下表面向上表面发展。这项研究不仅提供了对冰冲击破裂的基础了解,而且建立了适用于各种准脆性材料的通用理论框架。