当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Reachable set estimation of delayed second-order memristive neural networks
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-08-09 , DOI: 10.1016/j.amc.2024.128994 Yi Shen , Jiemei Zhao , Liqi Yu
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-08-09 , DOI: 10.1016/j.amc.2024.128994 Yi Shen , Jiemei Zhao , Liqi Yu
This study is concerned with reachable set bounding of delayed second-order memristive neural networks (SMNNs) with bounded input disturbances. By applying an analytic method, some inequality techniques and an adaptive control strategy, a sufficient condition of reachable set estimation criterion is derived to guarantee that the states of delayed SMNNs are bounded by a compact ellipsoid. A non-reduced order method is employed to investigate the reachable set bounding problem instead of the reduced order method by variable substitution. In addition, the proposed result is presented in algebraic form, which is easy to test. Finally, a simulation is performed to demonstrate the validity of the proposed algorithm.
中文翻译:
延迟二阶忆阻神经网络的可达集估计
本研究涉及具有有界输入干扰的延迟二阶忆阻神经网络(SMNN)的可达集边界。通过应用解析方法、一些不等式技术和自适应控制策略,导出了可达集估计准则的充分条件,以保证延迟 SMNN 的状态受紧椭球约束。采用非降阶方法来研究可达集有界问题,而不是通过变量替换的降阶方法。此外,所提出的结果以代数形式表示,易于测试。最后进行仿真验证所提算法的有效性。
更新日期:2024-08-09
中文翻译:
延迟二阶忆阻神经网络的可达集估计
本研究涉及具有有界输入干扰的延迟二阶忆阻神经网络(SMNN)的可达集边界。通过应用解析方法、一些不等式技术和自适应控制策略,导出了可达集估计准则的充分条件,以保证延迟 SMNN 的状态受紧椭球约束。采用非降阶方法来研究可达集有界问题,而不是通过变量替换的降阶方法。此外,所提出的结果以代数形式表示,易于测试。最后进行仿真验证所提算法的有效性。