当前位置:
X-MOL 学术
›
Biomass Bioenergy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Use and reuse of niobium phosphate catalyst for the removal of hemicellulose and production of furfural from raw bagasse, straw, and energy sugarcane
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-08-10 , DOI: 10.1016/j.biombioe.2024.107330 Igor M. Gonçalves , Diego M. Chaves , Victoria L. da Silva , Luiz A. Peternelli , Márcio H.P. Barbosa , Reinaldo F. Teófilo
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-08-10 , DOI: 10.1016/j.biombioe.2024.107330 Igor M. Gonçalves , Diego M. Chaves , Victoria L. da Silva , Luiz A. Peternelli , Márcio H.P. Barbosa , Reinaldo F. Teófilo
The production of bio-based furfural is well known, but processes that use homogeneous catalysis with mineral acids such as sulfuric acid are environmentally and economically unfeasible. This study aimed to explore the use and reuse of niobium phosphate in aqueous media as a heterogeneous catalyst in furfural production using three types of sugarcane waste. The experiments were designed with temperature (140–180 °C), niobium phosphate catalyst load (1–100 %), and time. The maximum xylose productivity was for bagasse (180 °C, 90 min, 1 %), straw (160 °C, 45 min, 50.5 %), and energy cane (180 °C, 120 min, 1 %), respectively 124.1, 82.0, and 68.7 g/kg. The maximum furfural productivity was achieved at 180 °C, 100 % catalyst load, and time 60, 30, and 60 min for bagasse, straw, and energy cane, which presented productivity of 95, 75, and 65 g/kg, respectively. The catalyst reuse was performed using conventional and makeup methods. Between each reaction, the catalyst was washed only with water. The average furfural productivity after five cycles was 75 and 77 g/kg for conventional and makeup methods, respectively. Given all aspects, the utilization of niobium phosphate goes towards a greener path by decreasing time and temperature to furfural production and hemicellulose removal.
中文翻译:
磷酸铌催化剂的使用和再利用用于从原甘蔗渣、秸秆和能源甘蔗中去除半纤维素并生产糠醛
生物基糠醛的生产是众所周知的,但使用无机酸(例如硫酸)的均相催化的工艺在环境和经济上都是不可行的。本研究旨在探索磷酸铌在水介质中作为多相催化剂在三种类型甘蔗废物生产糠醛中的使用和再利用。实验设计了温度 (140–180 °C)、磷酸铌催化剂负载量 (1–100%) 和时间。最大木糖生产率为甘蔗渣(180°C,90 分钟,1%)、秸秆(160°C,45 分钟,50.5%)和能源甘蔗(180°C,120 分钟,1%),分别为 124.1, 82.0 和 68.7 克/千克。甘蔗渣、秸秆和能源甘蔗在 180 °C、100% 催化剂负载和时间 60、30 和 60 分钟时实现最大糠醛生产率,分别为 95、75 和 65 g/kg。催化剂的再利用采用常规方法和补充方法进行。在每次反应之间,仅用水洗涤催化剂。常规方法和补充方法五个循环后的平均糠醛生产率分别为 75 和 77 g/kg。考虑到所有方面,通过减少糠醛生产和半纤维素去除的时间和温度,磷酸铌的利用走向了一条更绿色的道路。
更新日期:2024-08-10
中文翻译:
磷酸铌催化剂的使用和再利用用于从原甘蔗渣、秸秆和能源甘蔗中去除半纤维素并生产糠醛
生物基糠醛的生产是众所周知的,但使用无机酸(例如硫酸)的均相催化的工艺在环境和经济上都是不可行的。本研究旨在探索磷酸铌在水介质中作为多相催化剂在三种类型甘蔗废物生产糠醛中的使用和再利用。实验设计了温度 (140–180 °C)、磷酸铌催化剂负载量 (1–100%) 和时间。最大木糖生产率为甘蔗渣(180°C,90 分钟,1%)、秸秆(160°C,45 分钟,50.5%)和能源甘蔗(180°C,120 分钟,1%),分别为 124.1, 82.0 和 68.7 克/千克。甘蔗渣、秸秆和能源甘蔗在 180 °C、100% 催化剂负载和时间 60、30 和 60 分钟时实现最大糠醛生产率,分别为 95、75 和 65 g/kg。催化剂的再利用采用常规方法和补充方法进行。在每次反应之间,仅用水洗涤催化剂。常规方法和补充方法五个循环后的平均糠醛生产率分别为 75 和 77 g/kg。考虑到所有方面,通过减少糠醛生产和半纤维素去除的时间和温度,磷酸铌的利用走向了一条更绿色的道路。