当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Adhesive, Stretchable, and Thermosensitive Iontronic Hydrogels for Highly Sensitive Neuromorphic Sensing–Synaptic Systems
Nano Letters ( IF 9.6 ) Pub Date : 2024-08-08 , DOI: 10.1021/acs.nanolett.4c02614 Xuedan Chen 1, 2 , Long Chen 2, 3 , Jianxian Zhou 2 , Jiajun Wu 2 , Zhixun Wang 3 , Lei Wei 3 , Shuanglong Yuan 1 , Qichong Zhang 2
Nano Letters ( IF 9.6 ) Pub Date : 2024-08-08 , DOI: 10.1021/acs.nanolett.4c02614 Xuedan Chen 1, 2 , Long Chen 2, 3 , Jianxian Zhou 2 , Jiajun Wu 2 , Zhixun Wang 3 , Lei Wei 3 , Shuanglong Yuan 1 , Qichong Zhang 2
Affiliation
Artificial sensory afferent nerves that emulate receptor nanochannel perception and synaptic ionic information processing in chemical environments are highly desirable for bioelectronics. However, challenges persist in achieving life-like nanoscale conformal contact, agile multimodal sensing response, and synaptic feedback with ions. Here, a precisely tuned phase transition poly(N-isopropylacrylamide) (PNIPAM) hydrogel is introduced through the water molecule reservoir strategy. The resulting hydrogel with strongly cross-linked networks exhibits excellent mechanical performance (∼2000% elongation) and robust adhesive strength. Importantly, the hydrogel’s enhanced ionic conductance and heterogeneous structure of the temperature-sensitive component enable highly sensitive strain information perception (GFmax = 7.94, response time ∼ 87 ms), temperature information perception (TCRmax = −1.974%/°C, response time ∼ 270 ms), and low energy consumption synaptic plasticity (42.2 fJ/spike). As a demonstration, a neuromorphic sensing–synaptic system is constructed integrating iontronic strain/temperature sensors with fiber synapses for real-time information sensing, discrimination, and feedback. This work holds enormous potential in bioinspired robotics and bioelectronics.
中文翻译:
用于高灵敏神经形态传感-突触系统的自粘、可拉伸和热敏离子电子水凝胶
模拟化学环境中受体纳米通道感知和突触离子信息处理的人工感觉传入神经对于生物电子学来说是非常理想的。然而,在实现逼真的纳米级共形接触、敏捷的多模态传感响应和离子突触反馈方面仍然存在挑战。在这里,通过水分子库策略引入了精确调节的相变聚( N-异丙基丙烯酰胺)(PNIPAM)水凝胶。所得的具有强交联网络的水凝胶表现出优异的机械性能(〜2000%伸长率)和强大的粘合强度。重要的是,水凝胶增强的离子电导和温度敏感成分的异质结构能够实现高度敏感的应变信息感知(GF max = 7.94,响应时间∼ 87 ms)、温度信息感知(TCR max = -1.974%/°C,响应)时间∼ 270 ms)和低能耗突触可塑性(42.2 fJ/spike)。作为演示,构建了一个神经形态传感突触系统,将离子电子应变/温度传感器与纤维突触集成在一起,用于实时信息传感、辨别和反馈。这项工作在仿生机器人和生物电子学方面具有巨大的潜力。
更新日期:2024-08-08
中文翻译:
用于高灵敏神经形态传感-突触系统的自粘、可拉伸和热敏离子电子水凝胶
模拟化学环境中受体纳米通道感知和突触离子信息处理的人工感觉传入神经对于生物电子学来说是非常理想的。然而,在实现逼真的纳米级共形接触、敏捷的多模态传感响应和离子突触反馈方面仍然存在挑战。在这里,通过水分子库策略引入了精确调节的相变聚( N-异丙基丙烯酰胺)(PNIPAM)水凝胶。所得的具有强交联网络的水凝胶表现出优异的机械性能(〜2000%伸长率)和强大的粘合强度。重要的是,水凝胶增强的离子电导和温度敏感成分的异质结构能够实现高度敏感的应变信息感知(GF max = 7.94,响应时间∼ 87 ms)、温度信息感知(TCR max = -1.974%/°C,响应)时间∼ 270 ms)和低能耗突触可塑性(42.2 fJ/spike)。作为演示,构建了一个神经形态传感突触系统,将离子电子应变/温度传感器与纤维突触集成在一起,用于实时信息传感、辨别和反馈。这项工作在仿生机器人和生物电子学方面具有巨大的潜力。