当前位置: X-MOL 学术Current Directions in Psychological Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The development of human cortical scene processing.
Current Directions in Psychological Science ( IF 7.4 ) Pub Date : 2023-09-14 , DOI: 10.1177/09637214231191772
Daniel D Dilks 1 , Yaelan Jung 1 , Frederik S Kamps 2
Affiliation  

Decades of research have uncovered the neural basis of place (or "scene") processing in adulthood, revealing a set of three regions that respond selectively to visual scene information, each hypothesized to support distinct functions within scene processing (e.g., recognizing a particular kind of place versus navigating through it). Despite this considerable progress, surprisingly little is known about how these cortical regions develop. Here we review the limited evidence to date, highlighting the first few studies exploring the origins of cortical scene processing in infancy, and the several studies addressing when the scene regions reach full maturity, unfortunately with inconsistent findings. This inconsistency likely stems from common pitfalls in pediatric functional magnetic resonance imaging, and accordingly, we discuss how these pitfalls may be avoided. Furthermore, we point out that almost all studies to date have focused only on general scene selectivity and argue that greater insight could be gleaned by instead exploring the more distinct functions of each region, as well as their connectivity. Finally, with this last point in mind, we offer a novel hypothesis that scene regions supporting navigation (including the occipital place area and retrosplenial complex) mature later than those supporting scene categorization (including the parahippocampal place area).

中文翻译:


人类皮质场景处理的发展。



数十年的研究揭示了成年期地点(或“场景”)处理的神经基础,揭示了一组对视觉场景信息有选择性响应的三个区域,每个区域都假设支持场景处理中的不同功能(例如,识别特定类型)地点与导航)。尽管取得了巨大的进展,但令人惊讶的是,人们对这些皮质区域如何发育知之甚少。在这里,我们回顾了迄今为止有限的证据,重点介绍了最初几项探索婴儿期皮质场景处理起源的研究,以及几项探讨场景区域何时完全成熟的研究,不幸的是,结果不一致。这种不一致可能源于儿科功能磁共振成像的常见陷阱,因此,我们讨论如何避免这些陷阱。此外,我们指出,迄今为止几乎所有研究都只关注一般场景选择性,并认为通过探索每个区域更独特的功能及其连通性可以收集更深入的见解。最后,考虑到最后一点,我们提出了一个新的假设,即支持导航的场景区域(包括枕叶区域和压后复合体)比支持场景分类的场景区域(包括海马旁区域)成熟得晚。
更新日期:2023-09-14
down
wechat
bug