当前位置: X-MOL 学术Soft Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programming Motion into Materials Using Electricity-Driven Liquid Crystal Elastomer Actuators.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-01-23 , DOI: 10.1089/soro.2023.0063
Lin Xu 1, 2 , Chen Zhu 1 , Samuel Lamont 3 , Xiang Zou 1 , Yabing Yang 1 , Si Chen 1 , Jianning Ding 1, 4 , Franck J Vernerey 3
Affiliation  

As thermally driven smart materials capable of large reversible deformations, liquid crystal elastomers (LCEs) have great potential for applications in bionic soft robots, artificial muscles, controllable actuators, and flexible sensors due to their ability to program controllable motion into materials. In this article, we introduce conductive LCE actuators using a liquid metal electrothermal layer and a polyethylene terephthalate substrate. Our LCE actuators can be stimulated at low currents from 2 to 4 A and produce a maximum work density of 9.4 kJ∕m3. We illustrate the potential applications of this system by designing a palm-activated artificial muscle gripper, which can be used to grasp soft objects ranging from 5 to 55 mm in size, and even ring-shaped workpieces with precise external or internal support. Furthermore, inspired by the movement of fruit fly larvae, we designed a new soft robot capable of bioinspired crawling and turning by inducing anisotropic friction with an asymmetric design. Finally, we illustrate advanced motional control by designing an autonomously rotating wheel based on the asymmetric contraction of its spokes. To assist in the production of autonomously moving robots, we provide a thorough characterization of its motion dynamics.

中文翻译:


使用电力驱动液晶弹性体致动器将运动编程到材料中。



作为能够进行大可逆变形的热驱动智能材料,液晶弹性体(LCE)由于能够将可控运动编程到材料中,因此在仿生软机器人、人造肌肉、可控执行器和柔性传感器方面具有巨大的应用潜力。在本文中,我们介绍了使用液态金属电热层和聚对苯二甲酸乙二醇酯基板的导电 LCE 执行器。我们的 LCE 执行器可以在 2 至 4 A 的低电流下进行激励,并产生 9.4 kJ∕m3 的最大工作密度。我们通过设计手掌驱动的人工肌肉夹具来说明该系统的潜在应用,该夹具可用于抓取尺寸为 5 至 55 毫米的软物体,甚至具有精确的外部或内部支撑的环形工件。此外,受果蝇幼虫运动的启发,我们设计了一种新型软机器人,能够通过不对称设计诱导各向异性摩擦来进行仿生爬行和转弯。最后,我们通过设计一个基于辐条不对称收缩的自动旋转轮来说明先进的运动控制。为了协助生产自主移动机器人,我们提供了其运动动力学的全面表征。
更新日期:2024-01-23
down
wechat
bug