当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Review of progress in calculation and simulation of high-temperature oxidation
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-07-31 , DOI: 10.1016/j.pmatsci.2024.101348 Dongxin Gao , Zhao Shen , Kai Chen , Xiao Zhou , Hong Liu , Jingya Wang , Yangxin Li , Zhixiao Liu , Huiqiu Deng , William Yi Wang , Xiaoqin Zeng
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-07-31 , DOI: 10.1016/j.pmatsci.2024.101348 Dongxin Gao , Zhao Shen , Kai Chen , Xiao Zhou , Hong Liu , Jingya Wang , Yangxin Li , Zhixiao Liu , Huiqiu Deng , William Yi Wang , Xiaoqin Zeng
High-temperature oxidation can precipitate chemical and mechanical degradations in materials, potentially leading to catastrophic failures. Thus, understanding the mechanisms behind high-temperature oxidation and enhancing the oxidation resistance of thermal structural materials are endeavors of significant technical and economic value. Addressing these challenges often involves dissecting phenomena that span a broad range of scales, from micro to macro, a task that can prove challenging and costly through in-situ experimental approaches alone. Advancements in computational techniques have revolutionized the study of high-temperature oxidation. Various calculation and simulation methodologies now offer the means to rapidly acquire data with cost efficiency, providing a powerful complement to traditional experimental research. This review concentrates on the evolution and utility of these computational approaches in the domain of high-temperature oxidation. It underscores the critical role of calculation and simulation in materials science, offering insights into mass transport, mechanical failure, chemical reactions, and other multi-scale phenomena associated with oxidation processes. In this context, detailed discussions are presented on computational analyses at both atomic and mesoscopic levels, elucidating their respective contributions to our understanding of high-temperature oxidation mechanisms. Furthermore, the review highlights the impact of high-throughput computing in streamlining research and development processes, facilitating a more expedited exploration of innovative solutions in materials science. Through these discussions, the review aims to illustrate the indispensable nature of computational methods in advancing our comprehension and management of high-temperature oxidation phenomena.
中文翻译:
高温氧化计算与模拟研究进展综述
高温氧化会导致材料发生化学和机械降解,可能导致灾难性故障。因此,了解高温氧化背后的机理并提高热结构材料的抗氧化能力是具有重要技术和经济价值的努力。解决这些挑战通常需要剖析从微观到宏观的广泛尺度的现象,仅通过现场实验方法就证明这项任务具有挑战性且成本高昂。计算技术的进步彻底改变了高温氧化的研究。现在,各种计算和模拟方法提供了经济高效地快速获取数据的手段,为传统实验研究提供了有力的补充。本综述重点关注这些计算方法在高温氧化领域的演变和实用性。它强调了计算和模拟在材料科学中的关键作用,提供了对质量传递、机械故障、化学反应以及与氧化过程相关的其他多尺度现象的见解。在此背景下,详细讨论了原子和介观水平的计算分析,阐明了它们各自对我们理解高温氧化机制的贡献。此外,该评论还强调了高通量计算在简化研发流程、促进材料科学创新解决方案的更快探索方面的影响。 通过这些讨论,本文旨在说明计算方法在促进我们对高温氧化现象的理解和管理方面不可或缺的性质。
更新日期:2024-07-31
中文翻译:
高温氧化计算与模拟研究进展综述
高温氧化会导致材料发生化学和机械降解,可能导致灾难性故障。因此,了解高温氧化背后的机理并提高热结构材料的抗氧化能力是具有重要技术和经济价值的努力。解决这些挑战通常需要剖析从微观到宏观的广泛尺度的现象,仅通过现场实验方法就证明这项任务具有挑战性且成本高昂。计算技术的进步彻底改变了高温氧化的研究。现在,各种计算和模拟方法提供了经济高效地快速获取数据的手段,为传统实验研究提供了有力的补充。本综述重点关注这些计算方法在高温氧化领域的演变和实用性。它强调了计算和模拟在材料科学中的关键作用,提供了对质量传递、机械故障、化学反应以及与氧化过程相关的其他多尺度现象的见解。在此背景下,详细讨论了原子和介观水平的计算分析,阐明了它们各自对我们理解高温氧化机制的贡献。此外,该评论还强调了高通量计算在简化研发流程、促进材料科学创新解决方案的更快探索方面的影响。 通过这些讨论,本文旨在说明计算方法在促进我们对高温氧化现象的理解和管理方面不可或缺的性质。