当前位置:
X-MOL 学术
›
Eng. Geol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Evolution of relative density and shear wave velocity in non-compacted embankment layers: Geological long-term monitoring
Engineering Geology ( IF 6.9 ) Pub Date : 2024-08-03 , DOI: 10.1016/j.enggeo.2024.107674 Namsun Kim , Jong-Sub Lee , Geunwoo Park , Younggeun Yoo , Junghee Park
Engineering Geology ( IF 6.9 ) Pub Date : 2024-08-03 , DOI: 10.1016/j.enggeo.2024.107674 Namsun Kim , Jong-Sub Lee , Geunwoo Park , Younggeun Yoo , Junghee Park
This study proposes a novel method for assessing the evolution of relative density and shear wave velocity that vary with depth and effective stress in non-compacted embankment layers. Embedded soil stiffness measurement devices were used to monitor the shear waves at each stage of filling at the test site, and comprehensive laboratory compaction tests were conducted using a floating ring oedometer cell to reproduce real field conditions with minimal friction. Assuming a constant soil unit weight γ with 7% water content, the effective stress is proportional to depth (i.e., = ). Field test results were compared with the shear wave velocity relationships determined in laboratory tests for four samples of differing relative density (30%, 50%, 70%, and 90%), indicating that the relative density at the bottom of the embankment varied between 15% and 48%. However, the constant soil unit weight applied in this study can underestimate the relative density of the embankment, causing a prediction error if the self-weight compaction of the embankment is not minute. Therefore, this study provides guidelines based on a physics-inspired and data-based approach and anticipates the relative density and shear wave velocity analyzed in the context of depth in non-compacted embankment layers. The physics-based data analyses suggested in this study can be used in first-order estimations to assess the relative density and shear wave velocity evolution in non-compacted embankment layers.
中文翻译:
非压实路堤层相对密度和剪切波速的演变:地质长期监测
这项研究提出了一种新方法,用于评估非压实路堤层中随深度和有效应力变化的相对密度和剪切波速的演变。使用嵌入式土壤刚度测量装置来监测测试现场每个填充阶段的剪切波,并使用浮环土壤计单元进行全面的实验室压实测试,以最小的摩擦力再现真实的现场条件。假设土壤单位重量 γ 恒定,含水量为 7%,则有效应力与深度成正比(即 = )。将现场测试结果与实验室测试中确定的四个不同相对密度(30%、50%、70%和90%)样本的剪切波速度关系进行比较,表明路堤底部的相对密度在15%和48%。然而,本研究中采用的恒定土单位重量会低估路堤的相对密度,如果路堤的自重压实不微小,则会导致预测误差。因此,本研究提供了基于物理启发和基于数据的方法的指南,并预测了在非压实路堤层深度背景下分析的相对密度和剪切波速度。本研究中提出的基于物理的数据分析可用于一阶估计,以评估非压实路堤层中的相对密度和剪切波速度演化。
更新日期:2024-08-03
中文翻译:
非压实路堤层相对密度和剪切波速的演变:地质长期监测
这项研究提出了一种新方法,用于评估非压实路堤层中随深度和有效应力变化的相对密度和剪切波速的演变。使用嵌入式土壤刚度测量装置来监测测试现场每个填充阶段的剪切波,并使用浮环土壤计单元进行全面的实验室压实测试,以最小的摩擦力再现真实的现场条件。假设土壤单位重量 γ 恒定,含水量为 7%,则有效应力与深度成正比(即 = )。将现场测试结果与实验室测试中确定的四个不同相对密度(30%、50%、70%和90%)样本的剪切波速度关系进行比较,表明路堤底部的相对密度在15%和48%。然而,本研究中采用的恒定土单位重量会低估路堤的相对密度,如果路堤的自重压实不微小,则会导致预测误差。因此,本研究提供了基于物理启发和基于数据的方法的指南,并预测了在非压实路堤层深度背景下分析的相对密度和剪切波速度。本研究中提出的基于物理的数据分析可用于一阶估计,以评估非压实路堤层中的相对密度和剪切波速度演化。