Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Manipulating symmetry-breaking charge separation employing molecular recognition
Chem ( IF 19.1 ) Pub Date : 2024-08-09 , DOI: 10.1016/j.chempr.2024.07.010 Xueze Zhao , Ryan M. Young , Chun Tang , Guangcheng Wu , Kathryn R. Peinkofer , Yaoyao Han , Shuliang Yang , Yi-Kang Xing , Han Han , Huang Wu , Xuesong Li , Yuanning Feng , Ruihua Zhang , Charlotte L. Stern , Michael R. Wasielewski , J. Fraser Stoddart
Chem ( IF 19.1 ) Pub Date : 2024-08-09 , DOI: 10.1016/j.chempr.2024.07.010 Xueze Zhao , Ryan M. Young , Chun Tang , Guangcheng Wu , Kathryn R. Peinkofer , Yaoyao Han , Shuliang Yang , Yi-Kang Xing , Han Han , Huang Wu , Xuesong Li , Yuanning Feng , Ruihua Zhang , Charlotte L. Stern , Michael R. Wasielewski , J. Fraser Stoddart
The exploration of symmetry-breaking charge separation (SB-CS) is imperative when designing functional light-harvesting materials. Past explorations, however, have been confined to covalent systems, more often than not requiring complicated/demanding syntheses and facing inconvenient regulation of charge transfer processes. Here, we present a concept that regulates the efficiency of SB-CS through molecular recognition utilizing a pyridinium-based cyclophane as a host. This host undergoes photo-driven excited-state SB-CS. By employing different guests with distinct frontier molecular orbital energy levels, we have achieved comprehensive control of electron transfer pathways in the cyclophane, modulating between accelerated (>10-fold) intramolecular SB-CS involving superexchange and direct intermolecular electron transfer between the host and guest. The improvement in SB-CS efficiency results in catalytic activity for the photo-oxidation of a sulfur-mustard simulant. This research offers an opportunity for tuning SB-CS by utilizing molecular recognition, which holds the potential for achieving precise regulation without complicated organic syntheses.
中文翻译:
利用分子识别操纵对称性破坏电荷分离
在设计功能性光捕获材料时,对对称性破坏电荷分离 (SB-CS) 的探索势在必行。然而,过去的探索仅限于共价系统,通常需要复杂/苛刻的合成,并且面临电荷转移过程的不便调节。在这里,我们提出了一个概念,该概念通过使用基于吡啶的环烷作为宿主的分子识别来调节 SB-CS 的效率。该主机经历光驱动激发态 SB-CS。通过采用具有不同前沿分子轨道能级的不同客体,我们实现了对环烷中电子转移途径的全面控制,在涉及超交换的加速 (>10 倍) 分子内 SB-CS 和主客体之间的直接分子间电子转移之间进行调节。SB-CS 效率的提高导致硫芥子气模拟物的光氧化催化活性。这项研究为利用分子识别来调整 SB-CS 提供了机会,这有可能在没有复杂的有机合成的情况下实现精确调节。
更新日期:2024-08-09
中文翻译:
利用分子识别操纵对称性破坏电荷分离
在设计功能性光捕获材料时,对对称性破坏电荷分离 (SB-CS) 的探索势在必行。然而,过去的探索仅限于共价系统,通常需要复杂/苛刻的合成,并且面临电荷转移过程的不便调节。在这里,我们提出了一个概念,该概念通过使用基于吡啶的环烷作为宿主的分子识别来调节 SB-CS 的效率。该主机经历光驱动激发态 SB-CS。通过采用具有不同前沿分子轨道能级的不同客体,我们实现了对环烷中电子转移途径的全面控制,在涉及超交换的加速 (>10 倍) 分子内 SB-CS 和主客体之间的直接分子间电子转移之间进行调节。SB-CS 效率的提高导致硫芥子气模拟物的光氧化催化活性。这项研究为利用分子识别来调整 SB-CS 提供了机会,这有可能在没有复杂的有机合成的情况下实现精确调节。